
Editing Motion Graphics Video via Motion Vectorization and
Transformation
SHARON ZHANG, Stanford University, USA
JIAJU MA, Stanford University, USA
JIAJUN WU, Stanford University, USA
DANIEL RITCHIE, Brown University, USA
MANEESH AGRAWALA, Stanford University and Roblox, USA

<svg w=200, h=200, dur=“5s”>
 <g id=“0”>
 ,
 <scale val=“1.0 1.0; 1.05 1.0; ...” />,
 <translate val=“0.1 0.5; 0.15 0.5...” />,
 <rotate val=“1.0; 1.05; ...” />,
 <z-index val=“0; 0; ...” />,
 ...
 </g>
 <g id=“1”>...</g>
 ...
</svg>

NewYearsProgTransformer(P, args, [frmA, frmB]):
 // Set background color.
 setAppearance("bg", args.background)

 // OBJECT SELECTOR: Query for the red semicircle.
 selObjs = objSelector(P, propQuery, "color", "red", [frmA, frmB])
 // OBJECT TRANSFORMER: Change the appearance to the year.
 changeAppearanceObjTransformer(selObjs, args.year, [frmA, frmB])
 // Repeat obj selection and obj transformation for banner and animal.
 selObjs = objSelector(P, propQuery, "color", "yellow", [frmA, frmB])
 changeAppearanceObjTransformer(selObjs, args.banner, [frmA, frmB])
 selObjs = objSelector(P, propQuery, "color", "white", [frmA, frmB])
 changeAppearanceObjTransformer(selObjs, args.zodiac, [frmA, frmB])

 // OBJECT SELECTOR: Query for the gray curve.
 selObjs = objSelector(P, propQuery, "color", "gray", [frmA, frmB])
 changeAppearanceObjTransformer(selObjs, args.characters, [frmA, frmB])
 // OBJECT TRANSFORMER: Apply an oscillating scale.
 function pulse(t, [sx, sy]):
 return [sx + 0.5 * np.sin(t / 10), sy + 0.5 * np.sin(t / 10)]
 motionTexObjTransformer(selObjs, pulse, args.pulseArgs, [frmA,frmB])

 // OBJECT SELECTOR: Query for the blue circle.
 selObjs = objSelector(P, propQuery, "color", "blue", [frmA, frmB])
 // OBJECT TRANSFORMER: Remove the object.
 removeObj(selObjs, [frmA, frmB])

��������
�����������

Fig. 1. To edit an input motion graphics video (top left) we provide a pair of tools. Our motion vectorization pipeline converts the video into an SVG motion
program that represents objects, their per-frame motions (scale, translate, rotate, skew) and their occlusion relationships (z-index). Our program transformation
API enables programmatic creation of variations of the SVG motion program. Here the program transformer creates variations for the Chinese new year,
selecting objects in the input video based on their color and then changing their appearance, matching the animal to the year and adding a pulsing motion
texture to the Chinese characters above the animal icon.

Motion graphics videos are widely used in Web design, digital advertising,
animated logos and film title sequences, to capture a viewer’s attention. But

Authors’ addresses: Sharon Zhang, Stanford University, USA, szhang25@stanford.
edu; Jiaju Ma, Stanford University, USA, jiajuma@stanford.edu; Jiajun Wu, Stanford
University, USA, jiajunwu@cs.stanford.edu; Daniel Ritchie, Brown University, USA,
daniel_ritchie@brown.edu; Maneesh Agrawala, Stanford University and Roblox, USA,
maneesh@cs.stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/12-ART229 $15.00
https://doi.org/10.1145/3618316

editing such video is challenging because the video provides a low-level
sequence of pixels and frames rather than higher-level structure such as the
objects in the video with their corresponding motions and occlusions. We
present a motion vectorization pipeline for converting motion graphics video
into an SVGmotion program that provides such structure. The resulting SVG
program can be rendered using any SVG renderer (e.g. most Web browsers)
and edited using any SVG editor. We also introduce a program transformation
API that facilitates editing of a SVG motion program to create variations
that adjust the timing, motions and/or appearances of objects. We show
how the API can be used to create a variety of effects including retiming
object motion to match a music beat, adding motion textures to objects, and
collision preserving appearance changes.

CCS Concepts: • Computing methodologies → Graphics systems and
interfaces.

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

HTTPS://ORCID.ORG/0000-0002-6738-8906
HTTPS://ORCID.ORG/0000-0003-2880-8506
HTTPS://ORCID.ORG/0000-0002-4176-343X
HTTPS://ORCID.ORG/0000-0002-8253-0069
HTTPS://ORCID.ORG/0000-0002-8996-7327
https://orcid.org/0000-0002-6738-8906
https://orcid.org/0000-0003-2880-8506
https://orcid.org/0000-0002-4176-343X
https://orcid.org/0000-0002-8253-0069
https://orcid.org/0000-0002-8996-7327
https://doi.org/10.1145/3618316

229:2 • Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala

Additional Key Words and Phrases: vector graphics, motion vectorization,
scalable vector graphics, SVG, visual programs

ACM Reference Format:
Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala.
2023. Editing Motion Graphics Video via Motion Vectorization and Trans-
formation. ACM Trans. Graph. 42, 6, Article 229 (December 2023), 13 pages.
https://doi.org/10.1145/3618316

1 INTRODUCTION
Programs have proven to be useful in many areas of computer graph-
ics. The structure and repetition found naturally in our surroundings,
combined with the symbolic reasoning that humans use to describe
objects, can make programs particularly effective in representing
visual content. For instance, biologists use L-systems to model plant
structures [Prusinkiewicz and Lindenmayer 1996]; digital artists use
shader graphs to generate materials and textures [Cook 1984]; data
analysts use grammar-based APIs to create visualizations [Satya-
narayan et al. 2016; Wickham 2016]; and SVG is a widely adopted
declarative program format for vector graphics [W3C 2018].
There are several benefits to representing visual content with a

program rather than working directly in the output space of pixels
and frames. For one, programming languages often providemeaning-
ful abstractions and concepts (i.e., language primitives) that operate
at a higher level than pixels and align better with the ways that
humans think about the underlying content. With SVG, for example,
we can describe an animation as a collection of object primitives
moving in time, instead of specifying individual pixel colors over
time (Figure 1). Another benefit is that programs provide meaning-
ful control parameters. SVG programs can describe the motions of
objects using a sequence of affine transforms and editing the small
set of transform parameters can generate a wide range of motions.
In this work we focus on a particular domain of visual content–

namely,motion graphics–which are essentially animated graphic de-
signs usually consisting of shapes and typography in choreographed
motions. Such motion graphics are ubiquitous in Web design, digital
advertising, animated logos, and film title sequences. Yet, creating
effective motion graphics requires expertise in crafting eye-catching
motions and skill with animation software. Moreover, once they
have been rendered as video—the most common format for motion
graphics on the Web—they become very difficult to edit. Creating
variations of a motion graphics video (e.g., swapping out objects,
changing the text, or retiming motions of individual objects to mu-
sic) is impractical without access to a higher level representation.

We present tools for editing a motion graphics video by first con-
verting it into an SVG motion program. Our motion vectorization
pipeline identifies objects, tracks their motions and occlusion rela-
tionships across the video, and generates an SVG motion program
(Figure 1 top row). Our approach adapts the differentiable image
compositing optimization method of Reddy et al. [2020] to our track-
ing problem. The resulting motion program can be rendered using
an SVG renderer (e.g., most Web browsers) and edited using an SVG
animation editor. To take further advantage of our representation,
we introduce a program transformation API that allows users to
programmatically create variations of the SVG motion program.
Our approach is to treat the SVG motion program as a scene graph
composed of objects and their motions. We demonstrate how our

API can be used to create a variety of effects, including retiming
object motion to match music beats, adding motion textures (e.g.,
pulsing, wobbling) to objects and programmatically changing the
appearance of objects (Figure 1 middle, bottom rows).

In summary, we make two main contributions:

(1) A motion vectorization pipeline that converts a motion graph-
ics video into an SVG motion program.

(2) A program transformation API for programmatically editing
SVG motion programs to create variations.

2 RELATED WORK

Recovering programs from visuals. Because programs are such a
useful representation for visual data, graphics and vision researchers
have investigated how to automatically infer such programs from
raw visual data. This problem has been explored in multiple visual
domains, including 3D shape modeling [Deng et al. 2022; Du et al.
2018; Jones et al. 2020, 2021, 2022; Kania et al. 2020; Li et al. 2020,
2022; Ren et al. 2021; Tian et al. 2019; Willis et al. 2021; Wu et al.
2021; Xu et al. 2021; Yu et al. 2022], 2D shape and layout model-
ing [Ellis et al. 2018; Ganin et al. 2021, 2018; Reddy et al. 2021; Seff
et al. 2022; Sharma et al. 2018; Xu et al. 2022], material and texture
modeling [Guerrero et al. 2022; Hu et al. 2019, 2022; Tchapmi et al.
2022], extracting human motion primitives from video [Kulal et al.
2021, 2022] and deconstructing visualizations [Harper and Agrawala
2014, 2018; Poco and Heer 2017; Savva et al. 2011]. Deep learning
is a popular technique, either to detect primitives which are then
combined into programs using an optimization process [Ellis et al.
2018; Guo et al. 2020], to guide a search algorithm [Ellis et al. 2021;
Wang et al. 2019] or to predict higher-level functions that make
programs more compact and easier to edit [Ellis et al. 2021; Jones
et al. 2021]. In our work, we leverage the visual regularity of motion
graphics videos to perform per-frame primitive detection without
heavyweight neural network machinery; we then turn these per-
frame primitives into a temporally-consistent SVG motion program
via optimization.

Motion tracking.Multi-object motion tracking for natural video
is a well-studied problem [Ciaparrone et al. 2020; Luo et al. 2021].
Many of these systems output coarse-level motion information such
as per-frame object bounding boxes; they cannot reconstruct an
input video. Moreover, motion graphics videos tend to be relatively
textureless and may contain objects that undergo large motions
between frames. As a result, feature-based tracking methods such
as SIFT [Lowe 2004] and KLT [Lucas and Kanade 1981; Tomasi and
Kanade 1991] are less reliable. Recent neural network models for
optical flow [Dosovitskiy et al. 2015; Teed and Deng 2020] also take
advantage of the high-frequency textured nature of realistic video
and are less effective on motion graphics. In our work, we instead
use neural optical flow as initialization for additional optimization
or motion parameters.

Researchers have also developed motion tracking techniques for
cartoon style video [Liu et al. 2013; Sỳkora et al. 2009; Zhang et al.
2012; Zhu et al. 2016]. While these methods are built for flat-colored
cartoon sequences, they often produce undesirable correspondences
in motion graphics videos containing many repeated objects (e.g.,

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

https://doi.org/10.1145/3618316

Editing Motion Graphics Video via Motion Vectorization and Transformation • 229:3

letters). Our work is inspired by Bregler et al.’s [2002], who motion
capture and retarget the exaggerated deformations of cartoon char-
acters. However, they require manually annotated object contours
as input, whereas our goal is to further automate the object detec-
tion and motion tracking process and to recover an SVG motion
program that we can retarget via a program transformation API.

Layered video decomposition. Our work enables object-level ma-
nipulation ofmotion graphics video, which calls for an object-centric
layered decomposition. Prior work in decomposing natural videos
uses motion cues to generate layers based on relative depth from
the camera [Brostow and Essa 1999; Wang and Adelson 1994] or
on coherent camera motion [Fradet et al. 2008]. More recent neu-
ral methods decompose video into layers represented as frame se-
quences [Lu et al. 2020, 2021] or as neural atlases [Kasten et al. 2021;
Ye et al. 2022]. Such outputs can support appearance editing but
do not enable motion editing. Zhang et al. [2022] generate sprite
decompositions of cartoon videos, where each sprite is a sequence
of frames and a corresponding sequence of homographies that map
between sprite and frame coordinates. Since the appearance of each
sprite can change from frame to frame, the corresponding homogra-
phies do not fully characterize the sprite motion. They also assume
a fixed depth ordering of the layers which results in artifacts when
objects change in relative depths. Our pipeline adapts Reddy et
al.’s [2020] differentiable compositing method to compute relative
depth (and motion parameters) as a function of time, allowing for
dynamic object occlusion relationships.

3 BACKGROUND
Characteristics ofmotion graphics video.Motion graphics videos
are commonly composed of a set of foreground objects, including
basic shapes (e.g., rectangles, discs, etc.) and typography moving
over a static background. The objects may occlude one another as
well as split into separate objects, or merge together into a single
object. In general, motion graphics videos may use textures and
gradients to color both the foreground objects and the background,
and foreground objects may move and deform non-rigidly. But
we have found that in many contexts where motion graphics are
prevalent—e.g., Web design, animated logos, digital advertising, film
title sequences—a common stylistic choice is to use mostly solid-
colored foreground objects undergoing affine motions over a static
background. Sparing use of texture and photographic elements in
combination with simpler motions can improve legibility and make
it easier to guide the viewer’s gaze through the video. which is
crucial in contexts such as advertising. We focus on converting this
important class of motion graphics video into SVG programs.

Structure of SVG motion programs. Scalable vector graphics
(SVG) is a declarative programming format for vector graphics
that is widely implemented in Web browsers across a variety of
devices [W3C 2018]. To convert a motion graphics video into an
SVG motion program we can represent each foreground object,
as an SVG group <g> containing its appearance <image> and a
sequence of per-frame motion transforms. SVG natively supports
affine transforms for warping elements with separate parameters

Source elements

Target image

Visibility masks

Fig. 2. Differentiable image compositing [Reddy et al. 2020], takes a set
of sources S = {𝑆1, ..., 𝑆𝑁 } and a target image 𝑇 as input and computes
a set of layering placement tuples S∗ = { (𝑆𝑖 ,Θ𝑆𝑖 ,Λ𝑆𝑖) } such that the
composite image C(S∗) matches𝑇 .𝑀vis (𝑆𝑖 , C(S∗)) is a binary mask of
the visible pixels of 𝑆𝑖 after compositing. We extend Reddy et al.’s technique
to generate affine transforms Θ𝑆𝑖 rather than similarity transforms.

for scale, translate, rotate and skewX and skewY1. Each object
also includes a per-frame 𝑧-index depth ordering. Finally, a static
background lies at the lowest depth. Figure 1 shows an example
of our SVG representation where we have elided some detail to
highlight the per-frame sequence of transform parameter values,
(vals=...) for one of the objects in the scene.

4 MOTION VECTORIZATION
The goal of our motion vectorization pipeline is to recover an SVG
motion program from an input motion graphics video. The primary
challenge is to identify and track each of the objects in the input
video as they appear, move, occlude one another and disappear. We
use a four stage pipeline: (1) we segment frames into regions (e.g.
potential objects), (2) we generate candidate mappings explaining
how objects might move from frame-to-frame, (3) we select the best
collection of mappings explaining the frame-to-frame movements
of the objects and finally (4) we write an SVG motion program.
Our motion vectorization pipeline builds on Reddy et al.’s [2020]
differentiable compositing optimization technique. We first describe
how we adapt differentiable compositing to our problem setting in
Section 4.1; we then present each stage of our pipeline in Sections 4.2
to 4.5.

4.1 Differentiable image compositing
Differentiable image compositing [Reddy et al. 2020] is an optimiza-
tion technique originally designed to decompose a graphic pattern
comprised of discrete elements (which may partially occlude one
another) into a layered representation (Figure 2). It takes in a target
pattern image 𝑇 and a set of source element images S = {𝑆1, ..., 𝑆𝑁 }
that appear in the pattern and optimizes a similarity transform
(translation, rotation, and uniform scale) for each source element.
It also computes a depth ordering so that when the transformed
elements are rendered in back-to-front order they reproduce the
target pattern. That is,

DC(S,𝑇) = {(𝑆𝑖 ,Θ𝑆𝑖 ,Λ𝑆𝑖) |𝑆𝑖 ∈ S}, (1)

1The scale and translate parameters allow separate control over 𝑥 and 𝑦.

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

229:4 • Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala

�������������������������

������������������
�� 	��������������

�������������������
������� �������������������������

������������� ���������������������
��

����������������������

������� �������

Fig. 3. Eight types of mappings that can occur between objects𝑂𝑖 in frame 𝐹𝑡−1 and regions 𝑅 𝑗 in frame 𝐹𝑡 . (1) One-to-one. A single object𝑂1 maps to all
pixels in a single region 𝑅1 under a single affine transform Θ𝑂1 from the object to the region or vice versa under transform Θ𝑅1 . (2) One-to-many (no split).
A single object𝑂2 maps to multiple regions under a single affine transform Θ𝑂2 from object to regions. Since a single transform explains how the object
moves to match all of the regions we consider all of them to be part of the same object (i.e., the object does not split). (3) Many-to-one (no merge). Two or
more objects map to a single region, but require different affine transforms (e.g. Θ𝑂3 ,Θ𝑂4 , ...) from each object to the region. Since multiple transforms are
needed, we consider the objects as remaining distinct in frame 𝐹𝑡 (i.e., the objects do not merge). (4) Many-to-one (merge). Two or more objects map to a
single region under a single affine transform Θ𝑅5 , from the region to the objects. Since a single affine motion explains how the region moves to match all of
the objects, we consider this a merge of the distinct objects. (5) One-to-many (split). A single object maps two or more regions but require a different affine
transformation to map each region to the object (e.g. Θ𝑅6 ,Θ𝑅7 , ...). Since multiple transforms are required we consider the objects splitting into new distinct
objects. (6) Many-to-many (split and merge). Multiple objects map to multiple regions under differing motions. Object(s) are splitting and simultaneously
merging and the transforms needed to explain how such object(s) map to regions are ambiguous. (7) Unmapped object (disappear). When an object does
not map to any region in the current frame 𝐹𝑡 we consider the object to have disappeared. Unmapped region (appear). When a region does not map to any
object in the previous frame 𝐹𝑡−1 we consider it a new object appearing for the first time.

where Θ𝑆𝑖 is the transform that places 𝑆𝑖 in 𝑇 , and Λ𝑆𝑖 is the layer
z-ordering for 𝑆𝑖 in 𝑇 with respect to the other elements in S after
transforming by their Θ’s. We refer to the resulting set of layering
placement tuples as S∗ = {(𝑆𝑖 ,Θ𝑆𝑖 ,Λ𝑆𝑖)}𝑁𝑖=1.

With this information, we can define two additional image oper-
ators: (1) a compositing operator C(S∗) composites all of the trans-
formed source elements Θ𝑆𝑖 (𝑆𝑖) in back-to-front order according to
their Λ’s; (2) a visibility mask operator𝑀vis (𝑆𝑖 , 𝐼) produces a binary
mask of the pixels of image 𝐼 where 𝑆𝑖 is visible. Importantly,𝑀vis

always operates in the frame space represented by 𝐼 . For example,
𝑀vis (𝑆𝑖 , C(S∗)) is the set of pixels of the transformed Θ𝑆𝑖 (𝑆𝑖) that
are visible in C(S∗). See Figure 2 for examples of both of these
operators.
To apply differentiable compositing to the context of tracking

objects in motion graphics video, we have extended the optimiza-
tion to compute an affine transformation Θ𝑆𝑖 (translation, rotation,
non-uniform scale and skew) rather than a similarity transform.
Specifically, we add scaleX, scaleY, skewX, and skewY as indepen-
dent parameters in the optimization.

4.2 Stage 1: Region extraction
The first stage of our vectorization pipeline is to segment each input
frame 𝐹𝑡 into regions. Since we focus on motion graphics with
mostly solid colored objects, as a default we use color clustering
in LAB colorspace and mark the pixels in the cluster of the mode
color as background. Alternatively users can specify a background
image if the video has a photograph, texture or colored gradient
as background. To separate the remaining foreground pixels into
regions, as a default we construct an edge map for the frame [Canny
1986] and then apply Zhang et al.’s [2009] trapped-ball segmentation.
This gives us a set of regions R𝑡 = {𝑅1, . . . , 𝑅𝑁 } for each frame 𝐹𝑡 . If

the foreground is textured, users can choose to skip edge detection
and apply connected-components segementation on the foreground
pixels to form regions. Finally, we let users manually specify pixel-
level region boundaries if necessary, as noted in Section 5.

4.3 Stage 2: Generate candidate mapping types
Given a set of regions for every input frame, our goal is to identify
unique foreground objects and track them between frames. We
initialize this process at the first frame 𝐹1 by treating each region
𝑅𝑖 ∈ R1 as an object𝑂𝑖 so that O1 := R1. For each subsequent frame
𝐹𝑡 , our task is to determine how objects in the previous frame map
to regions in the current frame R𝑡 under affine transformations.
Figure 3 shows the eight types of mappings that can occur between
objects and regions.

To determine which of these mapping types best matches objects
in 𝐹𝑡−1 with regions in 𝐹𝑡 , we construct an initial set of the likeliest
mapping types in the form of two bipartite graphs: (1) the forward
candidate mapping graph Bfwd holds likely mappings taking objects
to regions; (2) the backward candidate mapping graph Bbwd holds
likely mappings taking regions to objects. We first describe how we
build the graphs and then explain how they encode likely mappings.

Build candidate mapping graphs. Figures 4 and 5 show how
we build Bfwd and Bbwd. For Bfwd, we first apply differentiable
compositing as DC(O𝑡−1, 𝐹𝑡) = O∗, treating O𝑡−1 as the set of
source elements and the current frame 𝐹𝑡 including all of its regions
R𝑡 , as the target image. Then, for each object𝑂𝑖 ∈ O𝑡−1, we consider
each region 𝑅 𝑗 ∈ R𝑡 and compute a source coverage weight as

𝑊 cov
src (𝑂𝑖 , 𝑅 𝑗) =

|𝑀vis (𝑂𝑖 , C(O∗)) ∩𝑀vis (𝑅 𝑗 , 𝐹𝑡) |
|𝑀vis (𝑂𝑖 , C(O∗)) |

. (2)

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

Editing Motion Graphics Video via Motion Vectorization and Transformation • 229:5

Frames

Fig. 4. To build the forward candidate mapping graph Bfwd (top row), we
consider each edge (𝑂𝑖 , 𝑅 𝑗) from object 𝑂𝑖 to region 𝑅 𝑗 and compute
coverage weights𝑊 cov

src (𝑂𝑖 , 𝑅 𝑗) and𝑊 cov
tgt (𝑂𝑖 , 𝑅 𝑗) . We retain only highest

non-zero weighted edges in the graph for each object – highlighted in green
in the matrices, one per row. We similarly build the backward mapping
graph Bbwd (bottom row), but flip the direction of the edges (𝑅 𝑗 ,𝑂𝑖) to run
from region 𝑅 𝑗 to object𝑂𝑖 with the coverage weights similarly inverted
𝑊 cov

src (𝑅 𝑗 ,𝑂𝑖) and𝑊 cov
tgt (𝑅 𝑗 ,𝑂𝑖) (bottom row).

Fig. 5. For edge (𝑂𝑖 , 𝑅 𝑗) , we compute coverage weights𝑊 cov
src and𝑊 cov

tgt by
first transforming the source object𝑂𝑖 to form Θ𝑂𝑖

(𝑂𝑖) .𝑊 cov
src is the area

of the visible overlap between Θ𝑂𝑖
(𝑂𝑖) and 𝑅 𝑗 (purple) as a percentage of

the visible area of the transformed object Θ𝑂𝑖
(𝑂𝑖) (pink or purple).𝑊 cov

tgt
is the area of the overlap (purple) as a percentage of the visible area of the
target region 𝑅 𝑗 (cyan or purple).

This weight measures the visible overlap between the transformed
object and the region as a percentage of the visible area of the
transformed object (Figure 5). We add the highest non-zero weighted
edge (𝑂𝑖 , 𝑅 𝑗) to the forward graph Bfwd (top left weight matrix in
Figure 4). Similarly, for each region 𝑅 𝑗 , we consider each object 𝑂𝑖

and compute a target coverage weight as

𝑊 cov
tgt (𝑂𝑖 , 𝑅 𝑗) =

|𝑀vis (𝑂𝑖 , C(O∗)) ∩𝑀vis (𝑅 𝑗 , 𝐹𝑡) |
|𝑀vis (𝑅 𝑗 , 𝐹𝑡) |

. (3)

This weight measures the visible overlap between the transformed
object and the region as a percentage of the visible area of the region
(Figure 5). We add the highest non-zero weighted edge (𝑂𝑖 , 𝑅 𝑗) to
Bfwd if it has not already been added to the graph (top right weight
matrix, Figure 4).

The backward graph is built in exactly the same way except that
we treat the regions R𝑡 as source elements and the previous frame
𝐹𝑡−1 as the target in the differentiable compositing optimization to
compute DC(R𝑡 , 𝐹𝑡−1) = R∗. For the coverage weights computa-
tions (Equations 2 and 3), we similarly flip the computation treating
regions 𝑅 𝑗 as sources and objects 𝑂𝑖 as targets and replace 𝐹𝑡 with
𝐹𝑡−1 (bottom row, Figure 4).

In practice, we have found that DC is sensitive to the initial place-
ment of source elements. Therefore, we initialize the source place-
ment using shape context [Belongie et al. 2006], optical flow [Teed
and Deng 2020] and RANSAC to estimate how each object (or re-
gion) moves to 𝐹𝑡 (or 𝐹𝑡−1). Note also that when we use DC, we
save the resulting sets of layering placement tuples O∗ and R∗ for
use in later stages of our pipeline.

Extract candidate mappings. The forward and backward can-
didate mapping graphs encode multiple candidate mappings. To
extract the individual candidate mappings from either of these
graphs, we first consider each connected component of the graph.
We treat any such component that is one-to-one, one-to-many,
or many-to-one (i.e., the component contains exactly one object
or exactly one region) as a candidate mapping. If the component

Fig. 6. Breaking a many-to-
many component of Bfwd.

forms a many-to-many graph, we fur-
ther break it into pieces (see inset) as
follows. For each node (object or region)
in the component, we form a subgraph
that includes all edges the node is part of.
Each resulting subgraph is then either
a one-to-one, one-to-many, or many-to-
one mapping candidate.
As shown in Figure 3, many-to-many mappings are ambiguous

because they require object(s) to simultaneously split and merge.
In practice, we have found that such split-merges are rare for the
kind of motion graphics videos we focus on in this work. Thus,
our approach is to force our algorithm to explain many-to-many
mappings as a combination of one-to-one, one-to-many, or many-
to-one mappings. Figure 7 shows the complete set of mappings we
extract from Bfwd and Bbwd for the example in Figure 4.

4.4 Stage 3: Select best collection of mappings
To select a set of mappings that best explain how objects move from
frame 𝐹𝑡−1 to 𝐹𝑡 we first score each candidate mapping we obtain in
stage 2 using a visibility-based penalty loss. Suppose𝐻 is a candidate
mapping type extracted from the forward graph, and O𝐻

𝑡−1 and R𝐻
𝑡

are the set of object(s) and region(s) in 𝐻 . We define the visibility
loss Lvis as a masked 𝐿2-norm of color differences between the
composite image C(O∗) of the transformed and layered objects, and
the current frame 𝐹𝑡 . That is,

Lvis (O𝐻
𝑡−1,R

𝐻
𝑡) = | | (C(O∗) − 𝐹𝑡) ⊗ 𝑀all | |2, (4)

where ⊗ denotes pixel-wise multiplication and𝑀all is a mask

𝑀all =
©«

⋃
𝑂𝑖 ∈O𝐻

𝑡−1

𝑀vis (𝑂𝑖 , C(O∗))
ª®®¬ ∪

©«
⋃

𝑅 𝑗 ∈R𝐻
𝑡

𝑀vis (𝑅 𝑗 , 𝐹𝑡)
ª®®¬ , (5)

consisting of the union of the visible pixels of all of the transformed
objects 𝑂𝑖 ∈ O𝐻

𝑡−1 (first term) with the union of all of the regions
𝑅 𝑗 ∈ R𝐻

𝑡 (second term). This loss is minimized when the pixels of
the transformed objects in 𝐻 match those of corresponding regions
in 𝐻 and there are no mismatched pixels. Similarly, if 𝐻 is a can-
didate mapping type from the backward graph, we compute the
penalty score as Lvis (R𝐻

𝑡 ,O𝐻
𝑡−1), while replacing O∗ with R∗ and

𝐹𝑡 with 𝐹𝑡−1 in Equations 4 and 5. In particular, the visibility loss

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

229:6 • Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

������������������������������

Fig. 7. We compute penalty scores Lvis for each candidate mapping and
then select the best conflict-free set of mappings using a greedy approach.

differs from the coverage weights (Section 4.3) as it evaluates the
color appearance of an entire mapping rather than object-region
alignment. Figure 7 shows the penalty scores for the mappings we
extracted for the example in Figure 4.

We next select a set of conflict-free mappings from our set of can-
didates that collectively best explain how objects move, appear, or
disappear between frames 𝐹𝑡−1 and 𝐹𝑡 . A pair of candidate mappings
are in conflict if they include the same object or region (Figure 7).
Starting with the complete set of candidate mappings, we repeatedly
select the candidate with the lowest penalty score and remove all
conflicting candidates from the set. We stop when the candidate
mapping set is empty, or the lowest score of the remaining candi-
dates is greater than a threshold 𝜖 . We have found that 𝜖 = 0.1 gives
good results across all our examples.

Finally, we propagate object IDs from the previous frame objects
O𝑡−1 to current frame regions R𝑡 based on the selected mappings
as shown in Figure 8. Anytime an object disappears we do not
propagate its ID to any subsequent regions. Thus, objects which
become completely occluded will re-appear with a new ID by de-
fault, though this can be easily changed with user input (Section 5).
During this process we also keep track of a canonical image for each
object. When an object first appears, we save its labeled pixels as
its canonical image. Every time an object appears unoccluded and
covers a larger region of pixels in a subsequent frame, we update
that canonical appearance by replacing the entire canonical image.
Thus we maintain a high-resolution appearance for each object.

4.5 Stage 4: Write an SVG motion program
In the final stage, we refactor the frame-to-frame affine motion
transforms for each object into an affine transform mapping the
object’s canonical image to each frame. This motion refactorization
could be obtained by multiplying the frame-to-frame transforms
or their inverses. In practice, we have found that we can further
increase motion accuracy by re-running the DC optimization using
the canonical images as the source and the corresponding labeled
pixels in each frame as the target. Finally, we write out a SVGmotion
program with a static background image and a set of foreground
objects, each represented by a canonical image, a per-frame sequence
of affine transforms placing the canonical image in the frame, and a
per-frame z-index depth for the object.

5 RESULTS: MOTION VECTORIZATION
Figure 1 shows an abstracted example of the SVG motion program
our vectorization pipeline recovers from an input motion graphics

ID = 2 ID = 2
ID = 2

�������������������������

������������

ID = 1ID = 1

����������
�	����������	�
ID = 10 ID = 11

������������������	���

ID = 4

ID = 5 ID = 12

��

��

���������������������	���

ID = 6

ID = 7

ID = 6

ID = 7

����������������������

ID = 3

ID = 8

ID = 9

Fig. 8. Propagating IDs based on mapping type. For one-to-one and one-to-
many (no split) mappings, we assign all pixels of the corresponding region(s)
the ID of the object. For one-to-many (split) and unmapped region (appear)
mappings, we create new IDs and label the pixels of each region with a
different ID. For many-to-one (merge) mappings, we create a new ID to
assign to the pixels of the region and then relabel all previous instances of
the corresponding objects in the mapping to this new ID. For many-to-one
(no merge) mappings, we assign the IDs of each object𝑂𝑖 in the mapping
to the corresponding pixels in Θ𝑂𝑖

(𝑂𝑖) .

video. We apply our motion vectorization pipeline on a test set
of 38 motion graphics videos sourced from the Web, with many
containing occlusions or fast object motion. A few videos include
textures, photographic elements or color gradients in the foreground
or background. Table 1 (Appendix A) gives more detail about these
videos and the supplemental website provides complete running
SVG motion programs for all of them.

We first consider the reconstruction error between frames of the
inputmotion graphics videos and corresponding frames produced by
the SVG motion programs. Overall, the average 𝐿2 RGB error across
our test set is 0.0086. Slight reconstruction errors appear mostly at
edges of objects due to small inaccuracies in transform parameters,
noise, compression or anti-aliasing (Figure 9 left). As a comparison
we also use the sprite-from-sprite decomposition method [Zhang
et al. 2022]. Sprite-from-sprite successfully decomposes the 30 test
videos and runs out of memory on the rest. The average 𝐿2 RGB
reconstruction error for sprite-from-sprite on this subset of videos
is 0.018, compared to 0.0079 using our method. See supplemental
materials A for a more detailed discussion of this comparison.
We also compute the number of tracking errors in each video.

We define a tracking error as any time a mapping from objects in
frame 𝐹𝑡−1 to regions in 𝐹𝑡 is incorrect with respect to a manually
annotated set of ground truthmappings. Table 1 (Appendix A) shows
the total number of such tracking errors as well as the count of errors
amongst each mapping type for all the videos in our test set.
We find that 24 videos in our test set contain no tracking errors

at all, even as some of them contain fast motion, occlusions, or both.
The remaining 14 videos all contain 15 errors or fewer. Across all
the videos, 75% of the tracking errors occur in one-to-one mappings.
Such errors are often due to fast motion and occlusions when ob-
jects enter or exit the frame (Figure 9 right top). The next most
common tracking error type, at 21%, is incorrect one-to-many (no-
split) mappings. Such errors often occur when objects occlude one
another and the mapping is misidentified as a one-to-many (split)
(Figure 9 right bottom). Two of the three remaining tracking errors
occur when many-to-one (no merge) mappings are misidentified as
many-to-one (merge) mappings. In these cases the video contains

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

Editing Motion Graphics Video via Motion Vectorization and Transformation • 229:7

0.0

1.5

Frame 13 Frame 14

Object IDs (Frame 14)Object IDs (Frame 13)

3 5 8 7 5

Frame 69 Frame 76

Object IDs (Frame 69) Object IDs (Frame 76)

22

22

29

27

31

Frame 16 Frame 81

Fig. 9. Left: Reconstruction errors (𝐿2 RGB difference) between frames of input motion graphics videos (5k, avokiddo) and the corresponding frames rendered
with the SVG motion program generated by our vectorization pipeline. Right: Tracking errors due to fast object motions and occlusions. Right Top: The
kapptivate input video contains characters translating quickly right to right. In frame 13 the ‘a’ is correctly assigned object ID 3, but in frame 14 it is incorrectly
assigned a new object ID 8. This occurs because the leftmost ‘p’ in frame 14 is the closest similar looking region to the ‘a’ in frame 13 but the candidate
mapping between the ‘a’ and the ‘p’ is rejected as being too low quality. The ‘p’ in frame 13 is also incorrectly mapped to the rightmost ‘p’ in frame 14 for
similar reasons, while the leftmost ‘p’ in frame 14 is incorrectly assigned a new object ID 7 since it remains unmatched. Thus this example yields 2 one-to-one
mapping errors and 1 unmatched region (appear) error. Right Bottom: In the lucy video object 22 is correctly tracked before frame 76 (we visualize it in frame
69 to show the complete unoccluded object). In frame 76 occlusions alter the visibility of the corresponding region so much that a one-to-many (no split)
mapping is misidentified as a one-to-many (split) mapping and the additional regions are given brand new IDs 27, 29 and 31.

similarly colored overlapping objects that move in unison, so our
pipeline merges them into one object. The final tracking error occurs
when a newly appearing region is incorrectly mapped to an existing
object. The unmatched region (appear) mapping is misidentified as
a one-to-one mapping (example in Figure 9 top right). Our test set
did not produce errors of the other four mapping types.
Correcting tracking errors.Most tracking errors are easily fixed
by reassigning object IDs to regions. For instance if a region was
assigned object ID 3 but should have been assigned object ID 7, we
can manually relabel it. We provide a programmatic interface for
such reassignment. An error in a many-to-one (no merge) mapping
can require breaking the pixel mask of a region into multiple regions.
In this case users can manually specify the pixel boundaries of each
region in the framewhere the error appears in Stage 1 of our pipeline
to enforce the correct region boundaries. We found this correction
to only be necessary for two videos (shapeman, confetti) in our test
set. In general however, because our pipeline produces relatively
few tracking errors they can often be corrected very quickly.

Discussion. The SVG motion programs produced by our vectoriza-
tion pipeline provide a representation of motion graphics videos that
can be rendered using a SVG renderer, including mostWeb browsers.
In addition, the motion programs can be edited using a SVG ani-
mation editor. We have built SVG motion program importers for
Adobe After Effects [Christiansen 2013] and Blender [Community
2018]. Such editors allow users to manually customize the motion
and appearance of the objects using a graphical interface they may
already be familiar with (see supplementary video).

6 MOTION PROGRAM TRANSFORMATION
Our program transformationAPI lets users programmatically express
different ways of manipulating an SVG motion program to generate
variations of it. Our approach is to treat the SVG motion program
as a scene graph that describes the motions of objects over time.
Our API adopts a well known-design pattern for working with
a scene graph via two types of methods; (1) state queries that
look up information about the objects and events in the scene, and

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

229:8 • Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala

(2) operators that modify the appearance or motion of objects. A
transformation program typically starts by querying for a set of
objects based on their properties (e.g. red colored objects) or the
events they participate in (e.g. collisions) and then applies one or
more operators to modify the selected objects. This design pattern
of querying and then modifying a scene graph is often used in game
engines (e.g., Unity [Unity Technologies 2023]) as well as Web APIs
(e.g. jQuery [OpenJS Foundation 2023], D3 [Bostock et al. 2011],
CSS [Mozilla 2023] and Chickenfoot [Bolin et al. 2005]) that treat
the DOM as a scene graph.
We describe the methods of our program transformation API

(Sections 6.1 and 6.2) and briefly describe how we can use them to
build a variety of higher-level transformation effects (Section 6.3).
The supplemental materials B provides additional details about our
API as well as multiple code examples. While our proof-of-concept
implementation of the API enables all of the examples that follow,
it is meant to minimally demonstrate our approach. In practice, it
could be extended to include additional state queries and operators
as necessary.

6.1 Program Transformation API: State Queries
State queries retrieve properties or events for a specific object, over
a range of frames:

propQuery(obj, propType, [frmA, frmB]): Returns a property of obj
for each frame in [frmA, frmB] based on propType. Property types
include: all, color, position, size, velocity, etc.

eventQuery(obj, eventType, [frmA, frmB]): Returns a list of events
obj is involved in over the range of frames [frmA, frmB] based
on eventType. Event types include: heldFrames, collisionFrames,
motionCycleFrames, etc.

To handle property queries, our API internally computes the cho-
sen property for the object from our motion program representation.
For example, to compute the color property of an object it clusters
the pixels of the canonical image in color space and returns the color
of the largest cluster for each frame in the frame range. Properties
that vary based on the motion (e.g., position, size, velocity) are
computed using the objects motion transform and reported in the
global coordinates of the video frame. The all property type returns
all objects that appear in motion program over the frame range.

To handle event queries, our API internally processes the motion
of the object to find frames when the chosen event type occurs. For
example, to identify heldFrames we look for successive frames of
the object where the motion transform from the canonical image to
the frame placement remains fixed and return a list of all such frames.
To identify collisionFrames we look for frames where the closest
distance between the object boundary and another object boundary
is below a threshold (e.g. the objects touch) and at least one of the
objects experiences a large change in velocity. The API returns a list
of collisions including the other object(s) involved and the points of
contact on each object. To identify motionCycleFrameswe look for
peaks in the autocorrelation of motion parameters (translation, rota-
tion, scale skew) of the object and return a list of the corresponding
frames.

6.2 Program Transformation API: Operators
Our API provides operators to modify the appearance or motion of
a specific object over a range of frames including:

retime(obj, [sFrmA, sFrmB], [tFrmA, tFrmB], easeFn[t]): Linear-
ly remap motion transforms in source frame range [sFrmA, sFrmB]
to target frame range [sFrmA, sFrmB]. Then resample the trans-
forms in the target frame range using easing function easeFn[t].

adjLocalMotion(obj, xformFn[t], [frmA, frmB]): Adjust motion of
obj in local coordinate frame (i.e., of canonical image), over the
range of frames [frmA, frmB] based on affine transforms generated
by linearly sampling xformFn[t] in the range [0,1]. This method
post-multiplies canonical-to-frame transform of obj.

adjGlobalMotion(obj, xformFn[t], [frmA, frmB]): Adjust motion of
obj in global coordinate frame (i.e., of video frame), over the range
of frames [frmA, frmB] based on affine transforms generated by
linearly sampling xformFn[t] in the range [0,1]. This method pre-
multiplies the canonical-to-frame transform of obj.

changeAppearance(obj, newAppearance, [frmA, frmB]): Set canoni-
cal image of obj to newAppearance for frames in [frmA, frmB].

In addition to the operators listed here, our API provides basic
operators for creating new objects, deleting objects, copying mo-
tions, setting the motion transforms (rather than adjusting them via
pre- or post-multiplication), etc.

Figure 10 shows the the general pattern of a motion program trans-
former, written with our API. An objSelector code block (or func-
tion) selects one ormore objects for transformation using a propQuery
or eventQuery. An objTransformer code block (or function) then
applies one or more operators to change the timing, motion or ap-
pearance of the selected object(s). For example, to transform all of
the red colored objects to blue, the objSelector function would
run a propQuery to obtain the color of each object and then select
out the red ones. Then the objTransformer code block would use
changeAppearance to set the color of the selected objects to blue.

6.3 Higher-level object transformer effects
Using our motion program transformation API we have built a va-
riety of objTransformer functions that each produce a different,
higher-level effect on the timing, motion or appearance of objects
(e.g. anticipation/follow-through, motion textures). Several of these
transformers implement motion adjustments commonly found in
other animation editing systems [Kazi et al. 2014, 2016; Ma et al.
2022]. Importantly, the functions in our API are designed to com-
pose with one another and facilitate the creation of many variations
of a motion graphic, thereby supporting iterative design and ex-
ploration. Figure 10 provides code for a few object transformers,
and supplemental materials B includes code for all of them. The
supplemental website also includes multiple example SVG motion
programs transformed by each of the higher-level effects described
here that can be executed in a Web browser. The following sections
give a brief overview of the types of object transformers.
Retiming. These object transformers manipulate an individual

object timeline. This includes functions that linearly stretch or
shrink the time scale of an object, apply slow in/out easing, re-
time object motions to reference audio beats, etc. See Figure 10c
and 10d for examples.

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

Editing Motion Graphics Video via Motion Vectorization and Transformation • 229:9

// Program Transformer structure.
MPTransformer(P, *args, [frmA, frmB]):
 // OBJ SELECTOR: Select objects in P via queries using any criteria
 // specified in the args.
 ...

 // OBJ TRANSFORMER: Apply an object operator to selected objects.
 ...

���

// Returns a list of object data which match some criteria.
function objSelector(P, queryFn, queryType, criteria, [frmA, frmB]):
 selObjs = {}
 selObjsInfo = {}
 for each obj in selObjs:
 x = queryFn(obj, args.queryType, [frmA, frmB])
 if x matches criteria:
 selObjs.insert(obj)
 selObjsInfo.insert(x)

 return selObjs, selObjsInfo

������
������
���

// Linear time scale by factor of k in frame range [frmA, frmB].
function linearRetimeObjTransformer(selObjs, k, [frmA, frmB]):
 for each obj in selObjs:
 sourceDur = frmB - frmA + 1
 targetDur = k * sourceDur
 // Retime from source range [frmA, frmB] to target frame range
 // [frmA, frm + targetDur].
 retime(obj, [frmA, frmB], [frmA, frmA + targetDur], f(t)=t)

�
�����
�������������	������������������
��������

// Add anticipation/follow through via Cartoon Animation Filter.
function anticipateFollowThruObjTransformer(selObjs, [frmA, frmB], A, sigma):
 for each obj in selObjs:
 // Define the cartoon animation filter based on Wang et al.
 function cartoonAnimationFilter(t, obj, [frmA, frmB], A, sigma):
 // Copy and pad segment of xForms to be set up for convolution later.
 tmpXForms = copy(obj.xForms[frmA, frmB])
 pad(tmpXForms, 0.5 * sigma)
 // -LoG is the inverse of the Laplacian of Gaussian function.
 newXForms = A * convolve(tmpXForms, -LoG(sigma))
 return newXForms[t]

 adjGlobalMotion(obj, cartoonAnimationFilter, [frmA, frmB]

�������
�������������	������
����������������������

// Retime to music beats (assume video has more segments than beats).
function retimeToBeatsObjTransformer(selObjs, music, eventType, [frmA, frmB]):
 // Get music beat points using libROSA in units of frames.
 beatPts = getMusicBeatPts(music)

 for each obj in selObjs:
 // Form video segments for each beat segment between beat points based on
 // eventType. If eventType is null default to beatPts as segment points.
 if eventType == null:
 segPts = beatPts
 else:
 segPts = eventQuery(obj, eventType, [frmA, frmB])

 for index i in segPts:
 // beatPts is in units of frames and includes a beat point at 0.
 retime(obj, [segPts[i], segPts[i + 1]],
 [beatPts[i], beatPts[i + 1]], f(t)=t^4)

�������
�������������	�������������
����������������
�����

Fig. 10. The general structure of motion program transformer (a) takes an SVG motion program P as input and alternates object selector blocks with object
transformer blocks to modify the SVG program. The object selector function objSelector (b) selects one or more objects for transformation. It first runs
queryFn (i.e., either propQuery or eventQuery) using the specified queryType (i.e., color, collisionFrames) and then filters the objects to only those
that match the specified criteria. The object transformers adjust the timing (c, d) motion (e) or appearance of a set of selected objects selObjs. See the
supplemental material B for additional examples of object transformers we have built to achieve a variety of effects.

Spatialmotion adjustment. These adjustment object transform-
ers manipulate how an individual object moves across the frame.
This includes functions that add anticipation/follow-through (Fig-
ure 10e) and functions that apply motion textures (e.g. wobbling or
pulsing) to an existing motion.

Appearance adjustment. The changeAppearance object trans-
former updates the appearance of a given object by replacing the
canonical appearance of an object with a new image. One unin-
tended consequence of an appearance change is that collisions be-
tween objects may be affected. For instance, naively changing the
dark blue circle in Figure 11 to a smaller-sized coin would not main-
tain collisions between the smaller coin and the yellow circle. Since
collisions are often important events in a video, we also allow for
collision-preserving appearance changes. This type of appearance
change uses event queries to find collisionFrames and then ap-
plies local motion adjustments to best preserve the original collisions
at those frames.

7 RESULTS: MOTION PROGRAM TRANSFORMATION
By combining objSelector and objTransformer blocks, we can
create a variety of motion graphic variations. Figure 1, Figure 11 and
Figures 5–6 in supplemental materials A show examples where we
have composed multiple objSelector and objTransformer blocks
to generate complex variations of retiming, spatial motion adjust-
ment and appearances changes. Executable SVG motion programs
and program transformer code for other additional examples with
retiming, spatial motion adjustments and appearance adjustments
are provided in the supplemental website. We encourage readers

to browse the examples to see the breadth of different transforma-
tions and variations that can be achieved with our motion program
transformation API.

Usability evaluation. To further evaluate the usability of our
program transformation API, we asked 10 people (all experienced
Python coders, 5 familiar with query-then-operate design pattern)
to use the API to programmatically create a variation of an SVG mo-
tion program (Figure 12). We first gave each participant a 30 minute
tutorial (a combination of oral instruction and a Colab notebook)
explaining how to use the API. We then gave them 15 minutes to
write their own program transforming an animated digital card into
one suitable for a different occasion.
All participants successfully wrote a transformation program

containing two or more object queries and transformations. On a
5 point Likert scale (1 = very hard, 5 = very easy) they all rated
the query-then-operate pattern as easy or very easy to understand.
Two participants who were familiar with the design pattern com-
pared the structure of our API to SQL and other scene-graph based
content creation APIs like Maya [Autodesk, INC. 2023a] and Mo-
tionBuilder [Autodesk, INC. 2023b]. Multiple participants stated in
free-response feedback that the API was "intuitive to understand,"
"lightweight and natural," and "easy to use."

Many participants liked the expressivity of the API. Nine partic-
ipants noted that the API was flexible enough to accomplish the
edits they wanted to make. One participant liked “how powerful
the API is while still being easy to use," further commenting that “it
covered a lot of possible transformations within relatively simple
operations." Another wrote that the programmatic approach of our

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

229:10 • Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala

// Change to a piggybank and coin while
// preserving collisions.
PiggybankProgTransformer(P, [0, P.endFrm]):
 // OBJ SELECTOR: Select dark blue ball.
 selObjs = objSelector(P, propQuery, "color", "gray", [frmA, frmB])
 // OBJ TRANSFORMER: Replace with coin but
 // preserve collisions.
 collisionPreserveObjTransformer(selObjs, “coin.png”, [frmA, frmB])
 // OBJ SELECTOR: Select yellow ball.
 selObjs = objSelector(P, propQuery, "color", "yellow",
 [frmA, frmB])
 // OBJ TRANSFORMER: Replace with piggybank.
 changeAppearance(obj, “piggybank.png”, [frmA, frmB])

������
�������������

��������
�����������

Fig. 11. Changing appearance while preserving collisions. This input video contains two balls that interact with one another with the dark blue ball bouncing
around outside and inside the yellow ball. The program transformer changes the blue ball into a coin that is smaller than the blue ball. It then uses the
collisionPreserveObjTransformer to adjust the motion of the smaller coin so that the collision points are maintained with the yellow ball. Finally it
changes the appearance of the yellow ball to a piggy bank with the body of the bank the same size as the yellow ball.

Fig. 12. We asked user study participants to use our transformation API to
repurpose a digital card with confetti falling down (top row). One participant
created a happy holidays card with falling snow (middle). Another created
a new years card reversing the falling motion to create streamers and stars.

API “would be especially useful for mass producing animations or
images that still look customized" and “[they] would welcome [the]
programmatic approach compared to painful and arduous manual
process of doing it through interfaces like InDesign." Overall, this
feedback suggests that users familiar with programming are able to
use our transformation API to easily produce variations of a SVG
motion program.

8 LIMITATIONS AND FUTURE WORK
Our work enables editing of motion graphics video by first convert-
ing the video into an SVG motion program and then using motion
program transformers programmatically create variations. However
there are a few limitations that warrant future work.

Lifting assumptions on input video. Our work focuses on motion
graphics video with a static background and solid-colored, lightly

textured or gradient-filled objects undergoing affine motions. Ex-
tending our approach to handle natural video containing moving
backgrounds with highly textured, photographic foreground objects
undergoing deformable motions, may be possible using recent video
matting techniques [Kasten et al. 2021; Lu et al. 2021]. Handling non-
affine motions within our pipeline would require modifications to
the differentiable compositing optimization (Section 4.1) to account
for the deformations.

Vectorizing canonical images. Our SVG motion programs repre-
sent the appearance of each object using a canonical image. Con-
verting these canonical images into a vector representation (e.g.,
composed of paths, shapes, gradients, etc.) would bring the benefits
of a higher-level abstraction to the appearance of the objects in
addition to their motions. Techniques for converting images into
vector representations [Orzan et al. 2008; Reddy et al. 2021] is an
active area of work that might be adapted to this context.

Higher-level program abstraction based on gestalt principles.
Our SVG motion programs represent motion graphics video using
abstractions (e.g., objects) and controls (e.g., affine transform param-
eters) that are more meaningful than pixels and frames of video. One
way to provide further meaningful abstraction might be to group
objects based on perception and gestalt principles. For example if
a motion graphic contains objects (e.g., letters) that move together
and are near one another, they might be grouped together to form a
higher-level composite object (e.g., a word). Such higher-level group-
ing could further facilitate program transformation as changes and
adjustments could be applied to the composite objects.

GUI for motion editing. Our system enables users to work with a
programmatic representation of motion graphics video rather than
pixels and frames. However, we have not developed a graphical user
interface for editing the resulting SVG motion programs. Indeed,
we believe many different GUIs could be built using our motion
program representation and our program transformation API. One
approach that may be especially fruitful is to extend the bidirectional
SVG editing interface of Sketch-n-Sketch [Hempel et al. 2019], so

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

Editing Motion Graphics Video via Motion Vectorization and Transformation • 229:11

that direct manipulation changes to the graphics are immediately
reflected in the SVG representation and vice versa. Inferring how
direct, graphical manipulations should affect an underlying motion
program is an important direction for future work.

9 CONCLUSION
While motion graphics videos are prevalent on the Web today, they
are difficult to edit because they are simply a collection of pixels
and frames. We have presented a motion vectorization pipeline that
converts such video into a SVG motion program that represents the
video as objects moving over time. We further provide a motion
program transformation API that enables programmatic editing
of the resulting SVG programs to create variations of the timing,
motions and object appearance.We believe that these tools can allow
users to more easily explore motion graphics design options by
borrowing from widely-available motion graphics video examples
and that they open the door to dynamically adapting the graphics
to the preferences of the viewer.

ACKNOWLEDGMENTS
We thank Lvmin Zhang for valuable discussions on sprite-from-
sprite. We would also like to thank the reviewers for their feedback.
This research is supported by NSF Award #2219864, the Brown
Institute for Media Innovation and the Stanford Institute for Human-
Centered AI (HAI).

REFERENCES
Autodesk, INC. 2023a. Maya. https:/autodesk.com/maya
Autodesk, INC. 2023b. MotionBuilder. https:/autodesk.com/motionbuilder
Serge Belongie, Greg Mori, and Jitendra Malik. 2006. Matching with shape contexts.

Statistics and Analysis of Shapes (2006), 81–105.
Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller. 2005.

Automation and Customization of Rendered Web Pages. In Proceedings of the 18th
Annual ACM Symposium on User Interface Software and Technology (Seattle, WA,
USA) (UIST ’05). Association for ComputingMachinery, New York, NY, USA, 163–172.
https://doi.org/10.1145/1095034.1095062

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 data-driven documents.
IEEE Transactions on Visualization and Computer Graphics (TVCG) 17, 12 (2011),
2301–2309.

Christoph Bregler, Lorie Loeb, Erika Chuang, and Hrishi Deshpande. 2002. Turning to
the masters: Motion capturing cartoons. In Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH). 399–407. https://doi.org/10.1145/566570.
566595

Gabriel J. Brostow and Irfan A. Essa. 1999. Motion based Decompositing of Video.
In Proceedings of the International Conference on Computer Vision, Kerkyra, Corfu,
Greece, September 20-25, 1999. IEEE Computer Society, 8–13. https://doi.org/10.1109/
ICCV.1999.791190

John Canny. 1986. A Computational Approach to Edge Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-8, 6 (1986), 679–698. https:
//doi.org/10.1109/TPAMI.1986.4767851

Mark Christiansen. 2013. Adobe After Effects CC Visual Effects and Compositing Studio
Techniques. Adobe Press.

Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik, Luigi Troiano, Roberto Tagli-
aferri, and Francisco Herrera. 2020. Deep learning in video multi-object tracking: A
survey. Neurocomputing 381 (2020), 61–88. https://doi.org/10.1016/j.neucom.2019.
11.023

Blender Online Community. 2018. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.
org

Robert L. Cook. 1984. Shade Trees. Computer Graphics (ACM) 18, 3 (1984), 223–231.
https://doi.org/10.1145/964965.808602

Boyang Deng, Sumith Kulal, Zhengyang Dong, Congyue Deng, Yonglong Tian, and
JiajunWu. 2022. Unsupervised Learning of Shape Programs with Repeatable Implicit
Parts. In Advances in Neural Information Processing Systems (NeurIPS).

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser, Caner Hazirbas, Vladimir
Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox. 2015. FlowNet:

Learning Optical Flow with Convolutional Networks. In IEEE/CVF International
Conference on Computer Vision (ICCV). 2758–2766. https://doi.org/10.1109/ICCV.
2015.316

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela
Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. InverseCSG: Automatic
conversion of 3D models to CSG trees. ACM Transactions on Graphics (TOG) 37, 6
(2018), 1–16.

Kevin Ellis, Armando Solar-Lezama, Daniel Ritchie, and Joshua B. Tenenbaum. 2018.
Learning to infer graphics programs from hand-drawn images. In Advances in
Neural Information Processing Systems (NeurIPS), Vol. 2018-December. 6059–6068.
arXiv:1707.09627

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke
Hewitt, Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. 2021. Dream-
coder: Bootstrapping inductive program synthesis with wake-sleep library learning.
In Proceedings of the 42nd ACM SIGPLAN international conference on programming
language design and implementation. 835–850.

Matthieu Fradet, Patrick Pérez, and Philippe Robert. 2008. Semi-automatic Motion
Segmentation with Motion Layer Mosaics. In Computer Vision - ECCV 2008, 10th
European Conference on Computer Vision, Marseille, France, October 12-18, 2008,
Proceedings, Part III (Lecture Notes in Computer Science, Vol. 5304), David A. Forsyth,
Philip H. S. Torr, and Andrew Zisserman (Eds.). Springer, 210–223. https://doi.org/
10.1007/978-3-540-88690-7_16

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. 2021.
Computer-aided design as language. In Advances in Neural Information Processing
Systems (NeurIPS).

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Ali Eslami, and Oriol Vinyals.
2018. Synthesizing programs for images using reinforced adversarial learning. In
International Conference on Machine Learning (ICML). PMLR, 1666–1675.

Paul Guerrero, Miloš Hašan, Kalyan Sunkavalli, Radomír Měch, Tamy Boubekeur, and
Niloy J Mitra. 2022. MatFormer: a generative model for procedural materials. ACM
Transactions on Graphics (TOG) 41, 4 (2022), 1–12.

Jianwei Guo, Oliver Deussen, Haiyong Jiang, Bedrich Benes, Xiaopeng Zhang, Dani
Lischinski, and Hui Huang. 2020. Inverse Procedural Modeling of Branching Struc-
tures by Inferring L-Systems. ACM Trans. Graph 39 (2020). https://doi.org/10.1145/
3394105

Jonathan Harper and Maneesh Agrawala. 2014. Deconstructing and Restyling D3
Visualizations. In Proceedings of the 27th Annual ACM Symposium on User Interface
Software and Technology (Honolulu, Hawaii, USA) (UIST ’14). ACM, New York, NY,
USA, 253–262. https://doi.org/10.1145/2642918.2647411

Jonathan Harper and Maneesh Agrawala. 2018. Converting Basic D3 Charts into
Reusable Style Templates. IEEE Transactions on Visualization and Computer Graphics
24, 3 (March 2018), 1274–1286. https://doi.org/10.1109/TVCG.2017.2659744

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-Directed
Programming for SVG. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association
for Computing Machinery, New York, NY, USA, 281–292. https://doi.org/10.1145/
3332165.3347925

Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A Novel Framework for Inverse
Procedural Texture Modeling. ACM Transactions on Graphics (TOG) 38, 6, Article
186 (2019), 14 pages.

Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022.
An inverse procedural modeling pipeline for SVBRDF maps. ACM Transactions on
Graphics (TOG) 41, 2 (2022), 1–17.

R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero,
Niloy J. Mitra, and Daniel Ritchie. 2020. ShapeAssembly: Learning to Generate
Programs for 3D Shape Structure Synthesis. ACM Transactions on Graphics (TOG)
39, 6 (2020). https://doi.org/10.1145/3414685.3417812 arXiv:2009.08026

R. Kenny Jones, David Charatan, Paul Guerrero, Niloy J. Mitra, and Daniel Ritchie.
2021. ShapeMOD: Macro Operation Discovery for 3D Shape Programs. ACM
Transactions on Graphics (TOG) 40, 4 (2021). https://doi.org/10.1145/3450626.3459821
arXiv:2104.06392

R Kenny Jones, Homer Walke, and Daniel Ritchie. 2022. PLAD: Learning to infer shape
programs with pseudo-labels and approximate distributions. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 9871–9880.

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. 2020. UCSG-NET - unsupervised
discovering of constructive solid geometry tree. In Advances in Neural Information
Processing Systems (NeurIPS), Vol. 33. 8776–8786.

Yoni Kasten, Dolev Ofri, Oliver Wang, and Tali Dekel. 2021. Layered neural atlases
for consistent video editing. ACM Transactions on Graphics 40, 6 (2021), 1–12.
https://doi.org/10.1145/3478513.3480546 arXiv:2109.11418

Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and George
Fitzmaurice. 2014. Draco: Bringing Life to Illustrations with Kinetic Textures.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Toronto, Ontario, Canada) (CHI ’14). Association for Computing Machinery, New
York, NY, USA, 351–360. https://doi.org/10.1145/2556288.2556987

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

https:/ autodesk.com/maya
https:/ autodesk.com/motionbuilder
https://doi.org/10.1145/1095034.1095062
https://doi.org/10.1145/566570.566595
https://doi.org/10.1145/566570.566595
https://doi.org/10.1109/ICCV.1999.791190
https://doi.org/10.1109/ICCV.1999.791190
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/j.neucom.2019.11.023
https://doi.org/10.1016/j.neucom.2019.11.023
http://www.blender.org
http://www.blender.org
https://doi.org/10.1145/964965.808602
https://doi.org/10.1109/ICCV.2015.316
https://doi.org/10.1109/ICCV.2015.316
https://arxiv.org/abs/1707.09627
https://doi.org/10.1007/978-3-540-88690-7_16
https://doi.org/10.1007/978-3-540-88690-7_16
https://doi.org/10.1145/3394105
https://doi.org/10.1145/3394105
https://doi.org/10.1145/2642918.2647411
https://doi.org/10.1109/TVCG.2017.2659744
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3414685.3417812
https://arxiv.org/abs/2009.08026
https://doi.org/10.1145/3450626.3459821
https://arxiv.org/abs/2104.06392
https://doi.org/10.1145/3478513.3480546
https://arxiv.org/abs/2109.11418
https://doi.org/10.1145/2556288.2556987

229:12 • Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala

Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani, and George Fitzmaurice. 2016.
Motion Amplifiers: Sketching Dynamic Illustrations Using the Principles of 2D
Animation. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery,
New York, NY, USA, 4599–4609. https://doi.org/10.1145/2858036.2858386

Sumith Kulal, Jiayuan Mao, Alex Aiken, and Jiajun Wu. 2021. Hierarchical Motion
Understanding via Motion Programs. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 6564–6572. https://doi.org/10.1109/CVPR46437.
2021.00650 arXiv:2104.11216

Sumith Kulal, Jiayuan Mao, Alex Aiken, and Jiajun Wu. 2022. Programmatic Concept
Learning for Human Motion Description and Synthesis. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 13833–13842. https://doi.org/10.
1109/cvpr52688.2022.01347

Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra. 2020. Sketch2CAD:
Sequential CAD Modeling by Sketching in Context. ACM Transactions on Graphics
(TOG) 39, 6 (2020), 164:1–164:14.

Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J. Mitra. 2022. Free2CAD: Parsing
Freehand Drawings into CAD Commands. ACM Transactions on Graphics (TOG) 41,
4 (2022), 93:1–93:16.

Xueting Liu, Xiangyu Mao, Xuan Yang, Linling Zhang, and Tien-Tsin Wong. 2013.
Stereoscopizing Cel Animations. ACM Trans. Graph. 32, 6, Article 223 (nov 2013),
10 pages. https://doi.org/10.1145/2508363.2508396

David G Lowe. 2004. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision 60 (2004), 91–110.

Erika Lu, Forrester Cole, Tali Dekel, Weidi Xie, Andrew Zisserman, David Salesin,
William T. Freeman, and Michael Rubinstein. 2020. Layered Neural Rendering for
Retiming People in Video. ACM Trans. Graph. 39, 6, Article 256 (nov 2020), 14 pages.
https://doi.org/10.1145/3414685.3417760

Erika Lu, Forrester Cole, Tali Dekel, Andrew Zisserman, William T. Freeman, and
Michael Rubinstein. 2021. Omnimatte: Associating Objects and Their Effects in
Video. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
4505–4513. https://doi.org/10.1109/CVPR46437.2021.00448 arXiv:2105.06993

Bruce D. Lucas and Takeo Kanade. 1981. An Iterative Image Registration Technique
with an Application to Stereo Vision. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence - Volume 2 (Vancouver, BC, Canada) (IJCAI’81).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 674–679.

Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, and Tae-Kyun Kim.
2021. Multiple object tracking: A literature review. Artificial Intelligence 293 (2021),
103448. https://doi.org/10.1016/j.artint.2020.103448

Jiaju Ma, Li-Yi Wei, and Rubaiat Habib Kazi. 2022. A Layered Authoring Tool for
Stylized 3D Animations. In Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing
Machinery, New York, NY, USA, Article 383, 14 pages. https://doi.org/10.1145/
3491102.3501894

Mozilla. 2023. CSS selectors. https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_
Selectors

OpenJS Foundation. 2023. jQuery API Documentation. https://api.jquery.com/
Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot,

and David Salesin. 2008. Diffusion curves: a vector representation for smooth-shaded
images. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1–8.

Jorge Poco and Jeffrey Heer. 2017. Reverse-engineering visualizations: Recovering
visual encodings from chart images. In Computer graphics forum, Vol. 36. Wiley
Online Library, 353–363.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. 1996. The algorithmic beauty of
plants. Springer-Verlag.

Pradyumna Reddy, Michaël Gharbi, Michal Lukáč, and Niloy J. Mitra. 2021. Im2Vec:
Synthesizing Vector Graphics without Vector Supervision. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 7338–7347. https://doi.org/10.
1109/CVPR46437.2021.00726 arXiv:2102.02798

Pradyumna Reddy, Paul Guerrero, Matt Fisher, Wilmot Li, and Niloy J Mitra. 2020.
Discovering pattern structure using differentiable compositing. ACM Transactions
on Graphics (TOG) 39, 6 (2020), 1–15.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai,
Junzhe Zhang, Liang Pan, Mingyuan Zhang, Haiyu Zhao, et al. 2021. CSG-Stump:
A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing. In
IEEE/CVF International Conference on Computer Vision (ICCV). 12478–12487.

Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 2016.
Vega-lite: A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics (TVCG) 23, 1 (2016), 341–350.

Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh Agrawala, and Jeffrey
Heer. 2011. ReVision: Automated Classification, Analysis and Redesign of Chart Im-
ages. In Proceedings of the 24th Annual ACM Symposium onUser Interface Software and
Technology (Santa Barbara, California, USA) (UIST ’11). Association for Computing
Machinery, New York, NY, USA, 393–402. https://doi.org/10.1145/2047196.2047247

Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P. Adams. 2022. Vitruvion: A
Generative Model of Parametric CAD Sketches. In International Conference on

Learning Representations (ICLR).
Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.

2018. CSGNet: Neural Shape Parser for Constructive Solid Geometry. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Daniel Sỳkora, John Dingliana, and Steven Collins. 2009. As-rigid-as-possible image reg-
istration for hand-drawn cartoon animations. In Proceedings of the 7th International
Symposium on Non-photorealistic Animation and Rendering. 25–33.

Lyne P. Tchapmi, Trishiet Ray, Micael Tchapmi, Bokui Shen, Roberto Martin-Martin,
and Silvio Savarese. 2022. Generating Procedural 3D Materials from Images Using
Neural Networks. In International Conference on Image, Video and Signal Processing
(IVSP). 32–40.

Zachary Teed and Jia Deng. 2020. Raft: Recurrent all-pairs field transforms for optical
flow. In European conference on computer vision. Springer, 402–419.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. 2019. Learning to Infer and Execute 3D Shape Programs.
In International Conference on Learning Representations (ICLR).

Carlo Tomasi and Takeo Kanade. 1991. Detection and tracking of point. Int J Comput
Vis 9 (1991), 137–154.

Unity Technologies. 2023. Unity User Manual. https://docs.unity3d.com/Manual/
W3C. 2018. Scalable Vector Graphics (SVG) 2. https://www.w3.org/TR/SVG2/
J.Y.A. Wang and E.H. Adelson. 1994. Representing moving images with layers. IEEE

Transactions on Image Processing 3, 5 (1994), 625–638. https://doi.org/10.1109/83.
334981

Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel
Ritchie. 2019. PlanIT: Planning and Instantiating Indoor Scenes with Relation Graph
and Spatial Prior Networks. ACM Transactions on Graphics (TOG) 38, 4, Article 132
(2019), 15 pages.

Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York. https://ggplot2.tidyverse.org

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne,
Armando Solar-Lezama, and Wojciech Matusik. 2021. Fusion 360 Gallery: A Dataset
and Environment for Programmatic CAD Construction from Human Design Se-
quences. ACM Transactions on Graphics (TOG) 40, 4, Article 54 (2021), 24 pages.

Rundi Wu, Chang Xiao, and Changxi Zheng. 2021. DeepCAD: A Deep Generative
Network for Computer-Aided Design Models. In IEEE/CVF International Conference
on Computer Vision (ICCV). 6772–6782.

Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl DD Willis, and Daniel Ritchie. 2021.
Inferring cad modeling sequences using zone graphs. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 6062–6070.

Xiang Xu, Karl DDWillis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayara-
man, and Yasutaka Furukawa. 2022. SkexGen: Autoregressive Generation of CAD
Construction Sequences with Disentangled Codebooks. In International Conference
on Machine Learning (ICML).

Vickie Ye, Zhengqi Li, Richard Tucker, Angjoo Kanazawa, and Noah Snavely. 2022.
Deformable sprites for unsupervised video decomposition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2657–2666.

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-
Amiri, and Hao Zhang. 2022. CAPRI-Net: Learning Compact CAD Shapes With
Adaptive Primitive Assembly. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 11768–11778.

Lei Zhang, Hua Huang, and Hongbo Fu. 2012. EXCOL: An EXtract-and-COmplete Lay-
ering Approach to Cartoon Animation Reusing. IEEE Transactions on Visualization
and Computer Graphics (TVCG) 18, 7 (2012), 1156–1169. https://doi.org/10.1109/
TVCG.2011.111

Lvmin Zhang, Tien-Tsin Wong, and Yuxin Liu. 2022. Sprite-from-Sprite: Cartoon
Animation Decomposition with Self-Supervised Sprite Estimation. ACM Trans.
Graph. 41, 6, Article 192 (nov 2022), 12 pages. https://doi.org/10.1145/3550454.
3555439

Song Hai Zhang, Tao Chen, Yi Fei Zhang, Shi Min Hu, and Ralph R. Martin. 2009.
Vectorizing cartoon animations. IEEE Transactions on Visualization and Computer
Graphics 15, 4 (2009), 618–629. https://doi.org/10.1109/TVCG.2009.9

Haichao Zhu, Xueting Liu, Tien Tsin Wong, and Pheng Ann Heng. 2016. Globally
optimal toon tracking. ACM Transactions on Graphics 35, 4 (2016), 1–10. https:
//doi.org/10.1145/2897824.2925872

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

https://doi.org/10.1145/2858036.2858386
https://doi.org/10.1109/CVPR46437.2021.00650
https://doi.org/10.1109/CVPR46437.2021.00650
https://arxiv.org/abs/2104.11216
https://doi.org/10.1109/cvpr52688.2022.01347
https://doi.org/10.1109/cvpr52688.2022.01347
https://doi.org/10.1145/2508363.2508396
https://doi.org/10.1145/3414685.3417760
https://doi.org/10.1109/CVPR46437.2021.00448
https://arxiv.org/abs/2105.06993
https://doi.org/10.1016/j.artint.2020.103448
https://doi.org/10.1145/3491102.3501894
https://doi.org/10.1145/3491102.3501894
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://api.jquery.com/
https://doi.org/10.1109/CVPR46437.2021.00726
https://doi.org/10.1109/CVPR46437.2021.00726
https://arxiv.org/abs/2102.02798
https://doi.org/10.1145/2047196.2047247
https://docs.unity3d.com/Manual/
https://www.w3.org/TR/SVG2/
https://doi.org/10.1109/83.334981
https://doi.org/10.1109/83.334981
https://ggplot2.tidyverse.org
https://doi.org/10.1109/TVCG.2011.111
https://doi.org/10.1109/TVCG.2011.111
https://doi.org/10.1145/3550454.3555439
https://doi.org/10.1145/3550454.3555439
https://doi.org/10.1109/TVCG.2009.9
https://doi.org/10.1145/2897824.2925872
https://doi.org/10.1145/2897824.2925872

Editing Motion Graphics Video via Motion Vectorization and Transformation • 229:13

Table 1. Our test set of 38 motion graphics videos. Six of the videos contain
no occlusions and no fast motion. Twelve contain only occlusions and no
fast motions. Seven contain only fast motion. Thirteen contain both. Some
of the videos contain textures, photographic elements or color gradients in
the foreground or background (marked with ‡). The reconstruction 𝐿2 error
shows the average RGB error for the SVG motion program produced by
our vectorization pipeline. The rightmost columns show the total number
tracking errors (all) and the errors by mapping type (Figure 3).

Video Num. Num. Recon. Tracking errors
frames objs 𝐿2 error All Mapping type

No occlusions and no fast motion
ball2 500 4 0.0034 0 0,0,0,0,0,0,0,0
ball3 215 8 0.0024 0 0,0,0,0,0,0,0,0
eyes 312 14 0.0050 0 0,0,0,0,0,0,0,0
format 151 6 0.0036 0 0,0,0,0,0,0,0,0
levers 144 6 0.0063 0 0,0,0,0,0,0,0,0
support 299 9 0.0024 0 0,0,0,0,0,0,0,0
Occlusions only
dog 133 12 0.017 0 0,0,0,0,0,0,0,0
five 144 5 0.0024 0 0,0,0,0,0,0,0,0
giftbox1 80 8 0.0078 0 0,0,0,0,0,0,0,0
giftbox2 80 10 0.012 0 0,0,0,0,0,0,0,0
hype1 144 4 0.022 0 0,0,0,0,0,0,0,0
hype2 144 4 0.024 0 0,0,0,0,0,0,0,0
pingpong 144 21 0.0093 0 0,0,0,0,0,0,0,0
playDesign 438 13 0.0068 0 0,0,0,0,0,0,0,0
sundance 336 70 0.0071 0 0,0,0,0,0,0,0,0
ball5 289 4 0.0072 0 0,0,0,0,0,0,0,0
sydney (‡) 98 44 0.0394 4 4,0,0,0,0,0,0,0
morningShow 147 162 0.011 5 5,0,0,0,0,0,0,0
Fast motion only
ball4 79 2 0.0026 0 0,0,0,0,0,0,0,0
book2 (‡) 36 36 0.0095 0 0,0,0,0,0,0,0,0
transforms 358 27 0.0034 0 0,0,0,0,0,0,0,0
seesaw (‡) 188 4 0.0017 0 0,0,0,0,0,0,0,0
wordAWeek 151 12 0.0036 0 0,0,0,0,0,0,0,0
deconstruct 156 11 0.0010 0 0,0,0,0,0,0,0,0
beautiful 221 16 0.0037 5 4,1,0,0,0,0,0,0
Both occlusions and fast motion
ball1 (‡) 394 2 0.0083 0 0,0,0,0,0,0,0,0
face 156 5 0.0011 0 0,0,0,0,0,0,0,0
filmRadio 177 60 0.0040 1 1,0,0,0,0,0,0,0
183 96 32 0.010 2 2,0,0,0,0,0,0,0
gsuite (‡) 481 24 0.017 3 3,0,0,0,0,0,0,0
book1 (‡) 108 7 0.0036 4 4,0,0,0,0,0,0,0
kapptivate 50 13 0.0063 4 3,0,0,0,0,0,0,1
avokiddo 130 20 0.0033 6 6,0,0,0,0,0,0,0
dates (‡) 181 36 0.023 6 6,0,0,0,0,0,0,0
5k (‡) 119 18 0.033 7 4,3,0,0,0,0,0,0
shapeman 70 14 0.0048 10 6,3,1,0,0,0,0,0
confetti 45 143 0.012 13 12,0,1,0,0,0,0,0
lucy 353 33 0.013 15 4,11,0,0,0,0,0,0

A APPENDIX: MOTION GRAPHICS VIDEO TEST SET
We created a test set of 38 motion graphics video to evaluate our
motion vectorization pipeline (Table 1). Tracking foreground objects
through occlusions (either between objects or at the edge of the
frame as on object entry/exit) and across fast motions (which we de-
fine as moments when an object’s bounding box in frame 𝐹𝑡−1 does
not overlap with its bounding box in 𝐹𝑡) is especially challenging.
Many of the test videos contain such challenging features. A few of
the more challenging videos also contain textures, photographic el-
ements or color gradients in the foreground or background (marked
with ‡). The two rightmost columns of Table 1 show the total num-
ber of tracking errors and a breakdown of these errors by mapping
type; each element of the 8-tuple records the number of errors for
corresponding mapping type as shown in Figure 3. Thus, the video
named lucy contains 4 one-to-one mapping errors (e.g., a region
in 𝐹𝑡 is assigned an incorrect object ID) and 11 one-to-many (no
split) errors (e.g., two or more regions that should be assigned the
same object ID were incorrectly assigned different object IDs). See
Figure 9 (bottom right) for an examples of this error for the lucy
video.

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Motion Vectorization
	4.1 Differentiable image compositing
	4.2 Stage 1: Region extraction
	4.3 Stage 2: Generate candidate mapping types
	4.4 Stage 3: Select best collection of mappings
	4.5 Stage 4: Write an SVG motion program

	5 Results: Motion Vectorization
	6 Motion Program Transformation
	6.1 Program Transformation API: State Queries
	6.2 Program Transformation API: Operators
	6.3 Higher-level object transformer effects

	7 Results: Motion Program Transformation
	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	References
	A Appendix: Motion Graphics Video Test Set

