
Editing Motion Graphics Video via Motion Vectorization and
Transformation Supplemental Material A
SHARON ZHANG, Stanford University, USA
JIAJU MA, Stanford University, USA
JIAJUN WU, Stanford University, USA
DANIEL RITCHIE, Brown University, USA
MANEESH AGRAWALA, Stanford University and Roblox, USA

ACM Reference Format:
Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala.
2023. Editing Motion Graphics Video via Motion Vectorization and Trans-
formation Supplemental Material A. ACM Trans. Graph. 42, 6, Article 229
(December 2023), 6 pages. https://doi.org/10.1145/3618316

This document provides more details on results of the motion vector-
ization pipeline and program transformation API. Section 1 provides
more comparison between our method and the sprite-from-sprite
method [Zhang et al. 2022] (Section 5 of the main paper) and more
examples of vectorization errors. Section 2 includes further imple-
mentation details on object transformers (Section 6.3 of the main
paper), as well as additional examples of program transformers
(Section 7 of the main paper) using these object transformers.

1 RESULTS: MOTION VECTORIZATION
Comparison to Zhang et al. [2022]. We compare our results to
sprite-from-sprite [Zhang et al. 2022], which takes a video as input
and decomposes it into 𝑁 sprites. There are several key differences
between sprite-from-sprite and our method. Most importantly, the
appearance of each sprite in the sprite-from-sprite representation
is time-dependent, meaning the per-frame homographies may not
fully characterize the sprite motion. On the other hand, our rep-
resentations contains a single appearance for each object, so the
object motion throughout the video is fully explained by our motion
parameters. Consequently, the sprite-from-sprite representation
may reconstruct the input video more accurately, but editing the
video still has to be done at the per-frame level rather than the ob-
ject level. Moreover, sprite-from-sprite often reconstructs the input
video more accurately at the expense of a meaningful sprite decom-
position (see Figure 1). Another difference in the sprite-from-sprite
method is that it assumes fixed depth ordering. This can impact the
quality of the sprite appearances. Figure 2 shows the results of a

Authors’ addresses: Sharon Zhang, Stanford University, USA, szhang25@stanford.
edu; Jiaju Ma, Stanford University, USA, jiajuma@stanford.edu; Jiajun Wu, Stanford
University, USA, jiajunwu@cs.stanford.edu; Daniel Ritchie, Brown University, USA,
daniel_ritchie@brown.edu; Maneesh Agrawala, Stanford University and Roblox, USA,
maneesh@cs.stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/12-ART229 $15.00
https://doi.org/10.1145/3618316

video with alternating depth ordering after applying our method
and sprite-from-sprite.
Out of the 38 test videos, sprite-from-sprite decomposed 30 of

them and ran out of memory for the remaining 8 videos. Overall,
the average reconstruction error of sprite-from-sprite [Zhang et al.
2022] is 0.018 on the 30 successfully decomposed videos, compared
to our average reconstruction error of 0.0079 on the same subset of
videos. A number of sprite-from-sprite decompositions also resulted
in trivial sprites, i.e.every pixel was assigned to a single sprite. We
use a Nvidia Titan RTX as opposed to a Nvidia RTX 3080, which was
used in the original paper. The Github repository for sprite-from-
sprite notes that this may affect the sprite decomposition results.

Non-affine motions and severe occlusions. As mentioned in the
main paper, our motion vectorization pipeline assumes an affine
motion model. When videos do not follow this assumption well,
our pipeline is still able to generate an SVG motion program, but
the resulting representation may contain extra objects and the re-
construction may not be as accurate. Objects which never appear
fully unoccluded may also appear to go against the affine motion
assumption, as we never have a true canonical appearance from the
video content. Our pipeline is still able to produce an SVG motion
program, but the motion program may not reconstruct the input
video as well. Figure 3 illustrates these two cases.

2 MOTION PROGRAM TRANSFORMATION: EXAMPLES
The object transformers in our API transform the timing, spatial
motion and appearances of objects. Figure 4 shows code for several
object transformers, and Figures 5–7 illustrate applications of dif-
ferent object transformers to create complex variations of an input
motion graphic. The following sections describe the implementation
of each object transformer in more detail.

Retiming
We have developed several object transformers that change the
timing of individual object(s) using the retime operator.

Linear time stretch/shrink. To linearly stretch (or shrink) the
timing of an object by a factor of 𝑘 over a source frames [sFrmA,
sFrmB], we specify a target frame range [tFrmA, tFrmB] such that
its duration is 𝑘 times the duration of the source frame range and we
use the identity easing function 𝑓 (𝑡) = 𝑡 . Code shown in Figure 4c.

Slow in/out easing. To add slow in/out easing to the timing of
an object over source frames [sFrmA, sFrmB] we specify a target

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

HTTPS://ORCID.ORG/0000-0002-6738-8906
HTTPS://ORCID.ORG/0000-0003-2880-8506
HTTPS://ORCID.ORG/0000-0002-4176-343X
HTTPS://ORCID.ORG/0000-0002-8253-0069
HTTPS://ORCID.ORG/0000-0002-8996-7327
https://doi.org/10.1145/3618316
https://orcid.org/0000-0002-6738-8906
https://orcid.org/0000-0003-2880-8506
https://orcid.org/0000-0002-4176-343X
https://orcid.org/0000-0002-8253-0069
https://orcid.org/0000-0002-8996-7327
https://doi.org/10.1145/3618316

229:2 • Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala

Fig. 1. Comparison between our method and sprite-from-sprite [Zhang et al. 2022].While the reconstruction quality of sprite-from-sprite is comparable
to ours, the sprite decomposition may not be meaningful. In this video (logo8), our method correctly extracts nine objects. Decomposing the same video into
nine foreground sprites with sprite-from-sprite results in multiple objects within one sprite, and also inconsistent object assignments across sprites (the two
objects in Sprite 3 at frame 21 appear in Sprite 2 at frame 283).

Fig. 2. Sprite-from-sprite [Zhang et al. 2022] decomposes a video into a
fixed number of sprites, with depth ordering fixed throughout the video. In
this video LA, the letters ‘L’ and ‘A’ alternate in front and behind positions.
Our method is able to model this variation in depth but the sprite-from-
sprite reconstruction suffers from flickering artifacts.

frame range of the same duration as the source and use a nonlinear
easing function (e.g., 𝑓 (𝑡) = 𝑡4 to generate slow in timing)1.

Animating on 2s, 3s, Ns. Traditional animators sometimes hold
frames of moving objects to produce to stylize the motion or create
a stop-motion look. We introduce this effect to the motion of an
object, by using a step function as the easing where the size and
position of each step is based on how long the each frame should
be held and the duration of the target frame range.

Removing held frames for each object. We can also remove held
frames from motions of an object to smooth its motion. To do so,
we first run an event query to find all the heldFrames for an object
and linearly shrink each segment of held frames to a single frame.
To restore the timing we linearly stretch each reduced frame and
next frame back to the duration of the original held frame segment.

Retiming object motion to music beats. Given a piece of mu-
sic, this object transformer extracts the beats in units of frames
using libROSA [McFee et al. 2015] and then breaks the timeline
of an object into segments. The segments can either match the
length of time between successive beats, or align with events such
as motionCycleFrames or collisionFrames. Next we apply the
retime operator so that the object motion segments match the beat
length and use a non-linear easing function that accentuates the

1See easings.net for a collection of commonly used easing functions.

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

Editing Motion Graphics Video via Motion Vectorization and Transformation Supplemental Material A • 229:3

Fig. 3. Left: Non-affine deformations. The two ‘B’s in this video do not deform affinely, so our SVG motion program does not reconstruct it accurately.
Right: Severe occlusions. The leaves never appear fully unoccluded in this video. This causes the SVG motion program to represent one of them with
multiple object IDs (0, 167 and 168) and also results in reconstruction errors along the occlusion boundaries (see misalignments around ’FALL’).

motion in and out of each beat point, in the manner of Davis and
Agrawala [2018]. Code shown in Figure 4d.

Spatial Motion Adjustment
We can use the adjLocalMotion and adjGlobalMotion operators
to adjust the spatial trajectories of objects.

Motion texture. In the context of motion graphics we definemotion
textures as local spatial perturbations to the motion of an object.
We can apply such motion textures to an object by first defining
a transform function xformFn that specifies a perturbation to be
applied in the local coordinate frame (i.e. the canonical image frame)
of the object and then passing it into the adjLocalMotion operator.
For example suppose the input video has and object translating from
left to across the screen. We can provide a transform function that
translates the object along its local y-axis according to sine function,
to produce an oscillating motion up and down as the object moves
from left to right in the frame. We can also create multiple copies of
an object and add slightly different local perturbations to each one
to create a form of Kazi et al.’s kinetic texture [2014].

Anticipation/follow-through.We can apply Wang et al.’s [2006]
cartoon animation filter on the motion of an object in the global

coordinate frame to add anticipation and follow-through to the
motion. As defined byWang et al., the cartoon animation filter takes
a time varying signal 𝑥 (𝑡), convolves it with an inverted Laplacian
of a Gaussian (LoG) filter and adds the convolved result back to the
original signal. In our setting, we treat the motion transforms of the
object as the signal and define a transform function xformFn that
performs the convolution. We then pass this transform function to
the adjGlobalMotion operator to add the convolved result back to
the original motion. Code shown in Figure 4e.

Appearance Adjustment
We can use the changeAppearance method to replace the canoni-
cal image of and object with a completely new visual appearance.
However if the new appearance differs significantly in shape from
the original it may not preserve collisions with other objects. We
have developed a motion program transformer that can can adjust
the motions of the colliding objects after such appearance changes
to preserve collisions in certain cases.

Collision preserving appearance change. If the new appearance
lies within the contour of the original appearance it cannot introduce
any new collisions with other objects in the scene. But even with

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

229:4 • Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala

Table 1. A comparison of 𝐿2 RGB reconstruction errors of sprite-from-
sprite [Zhang et al. 2022] against our method. Videos with textures, photo-
graphic elements or color gradients in the foreground or background are
marked with ‡. Sprite-from-sprite was unable to decompose the eight videos
with more than 32 objects due to out-of-memory errors (indicated by —).

Video Reconstruction 𝐿2 error
Sprite-from-sprite [2022] Ours

No occlusions and no fast motion
ball2 0.00019 0.0034
ball3 0.0 0.0024
eyes 0.017 0.0050
format 0.29 0.0036
levers 0.0067 0.0063
support 0.00012 0.0024
Occlusions only
dog 0.0058 0.017
five 0.0035 0.0024
giftbox1 0.0043 0.0078
giftbox2 0.0038 0.012
hype1 0.0011 0.022
hype2 2.7e-5 0.024
pingpong 0.0095 0.0093
playDesign 1.2e-5 0.0068
sundance — 0.0071
ball5 0.013 0.0072
sydney (‡) — 0.0394
morningShow — 0.011
Fast motion only
ball4 2.8e-5 0.0026
book2 (‡) — 0.0095
transforms 0.0 0.0034
seesaw (‡) 0.0095 0.0017
wordAWeek 0.054 0.0036
deconstruct 4.3e-5 0.0010
beautiful 0.013 0.0037
Both occlusions and fast motion
ball1 (‡) 0.0059 0.0083
face 0.0022 0.0011
filmRadio — 0.0040
183 3.7e-5 0.010
gsuite (‡) 0.024 0.017
book1 (‡) 0.046 0.0036
kapptivate 5.6e-6 0.0063
avokiddo 0.032 0.0033
dates (‡) — 0.023
5k (‡) 4.1e-5 0.033
shapeman 0.0 0.0048
confetti — 0.012
lucy — 0.013

this restriction, the new appearance may not fill the contours of
the original object, and thereby miss collisions that appeared in the
original video. However, we can preserve such collisions by locally
adjusting the motion of the new object as follows. Our event query
method for collisionFrames provides the collision point in the
local coordinate frame of the original object. We find the closest
point on the contour of the new appearance to the collision point

and add a local translation to the object, using adjLocalMotion,
so that this closest point matches the collision point. In practice,
we spread the local adjustment so that it occurs gradually over the
set of frames from the most recent previous collision of the object.
We also allow the motion adjustment to occur on the other object
involved in the collision or some combination of both objects. Note
that we do not check if the local adjustments will move an object
outside the contour of the original object and potentially introduce
new collisions. But in practice we have found that new collisions
are rare. We also note that this approach only considers pairwise
collisions and cannot handle more than one simultaneous collision.

REFERENCES
Abe Davis and Maneesh Agrawala. 2018. Visual Rhythm and Beat. ACM Transactions

on Graphics (TOG) 37, 4, Article 122 (jul 2018), 11 pages. https://doi.org/10.1145/
3197517.3201371

Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and George
Fitzmaurice. 2014. Draco: Bringing Life to Illustrations with Kinetic Textures.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Toronto, Ontario, Canada) (CHI ’14). Association for Computing Machinery, New
York, NY, USA, 351–360. https://doi.org/10.1145/2556288.2556987

BrianMcFee, Colin Raffel, Dawen Liang, Daniel Ellis, MattMcVicar, Eric Battenberg, and
Oriol Nieto. 2015. librosa: Audio and Music Signal Analysis in Python. In Proceedings
of the 14th Python in Science Conference. 18–24. https://doi.org/10.25080/majora-
7b98e3ed-003

Jue Wang, Steven M. Drucker, Maneesh Agrawala, and Michael F. Cohen. 2006. The
Cartoon Animation Filter. ACM Transactions on Graphics 25, 3 (2006). https:
//doi.org/10.1145/1141911.1142010

Lvmin Zhang, Tien-Tsin Wong, and Yuxin Liu. 2022. Sprite-from-Sprite: Cartoon
Animation Decomposition with Self-Supervised Sprite Estimation. ACM Trans.
Graph. 41, 6, Article 192 (nov 2022), 12 pages. https://doi.org/10.1145/3550454.
3555439

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

https://doi.org/10.1145/3197517.3201371
https://doi.org/10.1145/3197517.3201371
https://doi.org/10.1145/2556288.2556987
https://doi.org/10.25080/majora-7b98e3ed-003
https://doi.org/10.25080/majora-7b98e3ed-003
https://doi.org/10.1145/1141911.1142010
https://doi.org/10.1145/1141911.1142010
https://doi.org/10.1145/3550454.3555439
https://doi.org/10.1145/3550454.3555439

Editing Motion Graphics Video via Motion Vectorization and Transformation Supplemental Material A • 229:5

// Program Transformer structure.
MPTransformer(P, *args, [frmA, frmB]):
 // OBJ SELECTOR: Select objects in P via queries using any criteria
 // specified in the args.
 ...

 // OBJ TRANSFORMER: Apply an object operator to selected objects.
 ...

���

// Returns a list of object data which match some criteria.
function objSelector(P, queryFn, queryType, criteria, [frmA, frmB]):
 selObjs = {}
 selObjsInfo = {}
 for each obj in selObjs:
 x = queryFn(obj, args.queryType, [frmA, frmB])
 if x matches criteria:
 selObjs.insert(obj)
 selObjsInfo.insert(x)

 return selObjs, selObjsInfo

������
������
���

// Linear time scale by factor of k in frame range [frmA, frmB].
function linearRetimeObjTransformer(selObjs, k, [frmA, frmB]):
 for each obj in selObjs:
 sourceDur = frmB - frmA + 1
 targetDur = k * sourceDur
 // Retime from source range [frmA, frmB] to target frame range
 // [frmA, frm + targetDur].
 retime(obj, [frmA, frmB], [frmA, frmA + targetDur], f(t)=t)

�
�����
�������������	������������������
��������

// Add anticipation/follow through via Cartoon Animation Filter.
function anticipateFollowThruObjTransformer(selObjs, [frmA, frmB], A, sigma):
 for each obj in selObjs:
 // Define the cartoon animation filter based on Wang et al.
 function cartoonAnimationFilter(t, obj, [frmA, frmB], A, sigma):
 // Copy and pad segment of xForms to be set up for convolution later.
 tmpXForms = copy(obj.xForms[frmA, frmB])
 pad(tmpXForms, 0.5 * sigma)
 // -LoG is the inverse of the Laplacian of Gaussian function.
 newXForms = A * convolve(tmpXForms, -LoG(sigma))
 return newXForms[t]

 adjGlobalMotion(obj, cartoonAnimationFilter, [frmA, frmB]

�������
�������������	������
����������������������

// Retime to music beats (assume video has more segments than beats).
function retimeToBeatsObjTransformer(selObjs, music, eventType, [frmA, frmB]):
 // Get music beat points using libROSA in units of frames.
 beatPts = getMusicBeatPts(music)

 for each obj in selObjs:
 // Form video segments for each beat segment between beat points based on
 // eventType. If eventType is null default to beatPts as segment points.
 if eventType == null:
 segPts = beatPts
 else:
 segPts = eventQuery(obj, eventType, [frmA, frmB])

 for index i in segPts:
 // beatPts is in units of frames and includes a beat point at 0.
 retime(obj, [segPts[i], segPts[i + 1]],
 [beatPts[i], beatPts[i + 1]], f(t)=t^4)

�������
�������������	�������������
����������������
�����

Fig. 4. The general structure of motion program transformer (a) takes an SVG motion program P as input and alternates object selector blocks with object
transformer blocks to modify the SVG program. The object selector function objSelector (b) selects one or more objects for transformation. It first runs
queryFn (i.e., either propQuery or eventQuery) using the specified queryType (i.e., color, collisionFrames) and then filters the objects to only those that
match the specified criteria. The object transformers adjust the timing (c, d) motion (e) or appearance of a set of selected objects selObjs.

SyncedBounceTransformer(P, [0, P.endFrm]):
 // OBJ SELECTOR: Query all shapes with
 // “all” propType. No matchCriteria
 // needed, hence an empty array [].
 selObjs = objSelector(P, propQuery, “all”, [],
 [0, P.endFrm])

 // OBJ TRANSFORMER: Retime collisions in video to
 // match with music beats.
 retimeToBeatsObjTransformer(selObjs, “Levitating.wav”,
 “collisionFrames”,
 [0, P.endFrm])

������
�������������

��������
�����������

Fig. 5. Retiming collisions to music beat. In the input video the white balls bounce on the platforms underneath at different frequencies. This program
transformer retimes the bounces (i.e. collisions) to match the musical beat of a song using the retimeToBeatsObjTransformer function (Figure 4d). In the
output video all the balls high the platforms at the same time.

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

229:6 • Sharon Zhang, Jiaju Ma, Jiajun Wu, Daniel Ritchie, and Maneesh Agrawala

������
�������������

MotionStreakTransformer(P, [0, P.endFrm]):
 // OBJ SELECTOR: Query all shapes with “all”
 // propType. No matchCriteria needed, hence an
 // empty array [].
 selObjs = objSelector(P, propQuery, “all”, [], [0, P.endFrm])
 // Copy the selected objects to transform them differently later.
 selObjs_copy = copy(selObjs)
 // OBJ TRANSFORMER: Change appearance and add anticipation
 // follow-through.
 changeAppearanceObjTransformer(selObjs_copy, [“D_r.png”, “E_r.png”,
 “C_r.png”, “O_r.png”, “N_r.png”,
 “S_r.png”, “T_r.png”, “R_r.png”,
 “U_r.png”, “C_r.png”, “T_r.png”],
 [0, P.endFrm])
 anticipateFollowThruObjTransformer(selObjs, [0, P.endFrm],
 A=20, sigma=8)
 // Add anticipation follow-through to copied objs for motion trail.
 anticipateFollowThruObjTransformer(selObjs_copy, [0, P.endFrm],
 A=10, sigma=4)

��������
�����������

Fig. 6. Adding anticipation/follow-through and motion streak effect. This input video contains white text characters moving over a black back-
ground. The program transformer first copies the text objects. It then adds anticipation and follow-through to the original text using the
anticipateFollowThruObjTransformer (Figure 4e) with a relatively wide 𝜎 = 8. To create the motion streaking effect it it recolors the copied text
red using the changeAppearanceObjTransformer, and finally adds anticipation and follow-through to the copy using a narrower 𝜎 = 4.

// Change to a piggybank and coin while
// preserving collisions.
PiggybankProgTransformer(P, [0, P.endFrm]):
 // OBJ SELECTOR: Select dark blue ball.
 selObjs = objSelector(P, propQuery, "color", "gray", [frmA, frmB])
 // OBJ TRANSFORMER: Replace with coin but
 // preserve collisions.
 collisionPreserveObjTransformer(selObjs, “coin.png”, [frmA, frmB])
 // OBJ SELECTOR: Select yellow ball.
 selObjs = objSelector(P, propQuery, "color", "yellow",
 [frmA, frmB])
 // OBJ TRANSFORMER: Replace with piggybank.
 changeAppearance(obj, “piggybank.png”, [frmA, frmB])

������
�������������

��������
�����������

Fig. 7. Changing appearance while preserving collisions. This input video contains two balls that interact with one another with the dark blue ball bouncing
around outside and inside the yellow ball. The program transformer changes the blue ball into a coin that is smaller than the blue ball. It then uses the
collisionPreserveObjTransformer to adjust the motion of the smaller coin so that the collision points are maintained with the yellow ball. Finally it
changes the appearance of the yellow ball to a piggy bank with the body of the bank the same size as the yellow ball.

ACM Trans. Graph., Vol. 42, No. 6, Article 229. Publication date: December 2023.

Supplemental Material B:
Program Transformation API
SIGGRAPH Asia 2023 Technical Paper Submission #207

Motion Program Transformers
In general a motion program transformer takes a SVG motion program P and some additional
args as input and transforms it in place into a new SVG motion program P' . The basic
structure of a program transformer is an alternating sequence of objSelector blocks followed by
objTransformer blocks.

MPTransformer(P, args, [frmA, frmB]):

// OBJ SELECTOR block

// Select objects in P via queries using criteria specified in args.

...

// OBJ TRANSFORMER block

// Apply an object operator to selected objects.

...

Object Selectors
An objSelector is a function which selects a set of objects in the motion program based on
some criteria. It makes use of the propQuery and eventQuery methods in the API to
determine which objects to select. The function has the following form:

// Returns a list of object data which match some criteria.

function objSelector(P, queryFn, queryType, criteria, [frmA, frmB]):

selObjs = {}

selObjsInfo = {}

for each obj in selObjs:

x = queryFn(obj, queryType, [frmA, frmB])

if x matches criteria:

selObjs.insert(obj)

selObjsInfo.insert(x)

return selObjs, selObjsInfo

Here, the queryFn is either a propQuery or eventQuery, and we select objects whose
queryType (e.g., “color” for propQuery or “collisionFrames” for eventQuery) matches
the specified criteria (e.g., “red” for “color” or isNonEmpty for “collisionFrames”)
within the frame range [frmA, frmB]. Using an object selector, we can retrieve objects and
the relevant query information based on specific properties or events.

Object Transformers
Once we have selected a subset of objects in P with an object selector, we apply modification to
those objects using an ObjTransformer block. We can define specific object transformers for
individual modifications using the operators in our API (pink keywords).

Retiming
Linear time stretch/shrink

// Linear time stretch/shrink by factor k in src frame range [frmA, frmB]

function linearRetimeObjTransformer(selObjs, k, [frmA, frmB]):

for each obj in selObjs:

sourceDur = frmB - frmA + 1

targetDur = k * sourceDur

// Retime from source range [frmA, frmB] to target frame

// range [frmA, frm + targetDur]. Identity easing function

// f(t) = t ensure linear retiming.

retime(obj, [frmA, frmB], [frmA, frmA + targetDur], f(t)=t)

Slow in/out easing

// Slow in/out using a given easingFn

function slowInOutObjTransformer(selObjs, easingFn, [frmA, frmB])

for each obj in selObjs:

// A possible easing function is f(t)=t^4 for a slow in effect, and

// f(t)=1-(1-t)^4 for a slow out effect.

// We can use any easing fn as long as f(0)=0 and f(1)=1.

retime(obj, [args.frmA, args.frmB], [args.frmA, args.frmB], easingFn)

Animating on 2s, 3s, Ns

// Animating on 2s, 3s, and Ns.

function animOnNsObjTransformer(selObjs, N, [frmA, frmB]):

for each obj in selObjs:

dur = frmB - frmA + 1

numSteps = dur / N

stepWidth = 1 / numSteps

// E.g., if we have 6 frames and animating on 2s, then

// numSteps = 3, stepWidth = 0.33,

// stepFn is then the function f(t)=0 if 0<=t<0.33,

// f(t)=0.5 if 0.33<=t<0.66, f(t)=1 if 0.66<=t<=1.0

stepFn = step(dur, numSteps, stepWidth)

retime(obj, [frmA, frmB], [frmA, frmB], stepFn)

Removing held frames for each object

// Remove frames in which motion was held for each object.

function removeHeldFramesObjTransformer(selObjs, selObjsInfo, [frmA, frmB])

for each (obj, heldFrmSegs) in selObjs, selObjsInfo:

heldFrmSegs = eventQuery(obj, "heldFrames", [frmA, frmB])

for each seg in heldFrmSegs:

// Remove held frames first by remapping the held frames to 1 frame.

heldDur = seg.endFrm - seg.startFrm + 1

retime(obj, [seg.startFrm, seg.endFrm],

[seg.startFrm, seg.startFrm], f(t)=t)

// Then linearly stretch to the original duration.

retime(obj, [seg.startFrm, seg.endFrm],

[seg.startFrm, seg.startFrm + heldDur], f(t)=t)

Retiming object motion to music beats

// Retime to music beats (assume that the video has more segments than

// specified beats).

function retimeToBeatsObjTransformer(selObjs, music, eventType,

[frmA, frmB]):

// Get music beat points using libROSA in units of frames

beatPts = getMusicBeatPts(music)

for each obj in selObjs:

// Form segments of video that will correspond to each beat segment

// (segment between successive beat points) based on eventType. For

// example the eventType "motionCycleFrames" returns the peaks of an

// autocorrelation on the motion and is used to sync cyclic motion

// periods to the audio beat. If eventType = null default to using the

// beatPts as the video segment points.

if eventType == null:

segPts = beatPts

else:

segPts = eventQuery(obj, eventType, [frmA, frmB])

for index i in segPts:

// beatPts is in units of frames and includes a beat point at 0.

retime(obj, [segPts[i], segPts[i + 1]],

[beatPts[i], beatPts[i + 1]], f(t)=t^4)

Spatial Motion Adjustment
Motion texture

// Add local “textural” motion to object

function motionTexObjTransformer(selObjs, xFormFn, xFormFnArgs,

[frmA,frmB]):

for each obj in selObjs:

// E.g., if we want to apply a small up and down oscillation

// we can set xFormFn to f(t, [y, amp]) = y[t] + amp * sin(t)

adjLocalMotion(obj, xFormFn(xFormFnArgs), [frmA, frmB])

Anticipation/follow-through

// Add anticipation/follow through via Cartoon Animation Filter

function anticipateFollowThruObjTransformer(selObjs, [frmA, frmB], A,

sigma):

for each obj in selObjs:

// define the cartoon animation filter based on the work by Wang et al.

function cartoonAnimationFilter(t, obj, [frmA, frmB], A, sigma):

// copy segment of xForms to be set up for convolution later

tmpXForms = copy(obj.xForms[frmA, frmB])

// pad the tmpXForms for the Laplacian of Gaussian (LoG)

pad(tmpXForms, 0.5 * sigma)

// convolve(arr, signal) performs a 1d convolution.

// -LoG is the inverse of the Laplacian of Gaussian function

newXForms = A * convolve(tmpXForms, -LoG(sigma))

return newXForms[t]

adjGlobalMotion(obj, cartoonAnimationFilter, [frmA, frmB])

Appearance Adjustments
Basic change of object appearance

// Change object appearance, where newAppearances is an array of filenames

// for each selected object.

function changeAppearanceObjTransformer(selObjs, newAppearances, [frmA,

frmB])

for each (obj, newAppearance) in (selObjs, newAppearances):

changeAppearance(obj, newAppearance, [frmA, frmB])

Collision preserving appearance change

// Collision preserving appearance change.

function collisionPreserveObjTransformer(selObjs, newAppearances,

[frmA, frmB]):

for each obj in selObjs:

collisions = eventQuery(obj, "collisionFrames", [frmA, frmB])

// We compute a local transformation that will adjust the new object

// appearance to the collision point.

for collision in collisions:

// findNearestPt(newAppearance, point) returns the closest point on

// the boundary of newAppearance to a specified point.

nearestPt = findNearestPt(newAppearances[obj], collision.thisObjPt)

// moveFromAtoB(t, A, B) produce a local transformation that moves

// an object from a point in A to a point in B at time t.

adjLocalMotion(obj, moveFromAtoB(t, thisNearestPt, thisObjPt),

[frmA, frmB])

// Set new object appearance.

changeAppearance(obj, newAppearance, [frmA, frmB])

Highlight Results: Motion Program Transformers

sydney: We can accomplish tasks like text translation using our program transformations. In
this example, we use appearance changes to translate the text into Chinese. We also update
the text to reflect a new travel destination (Spain) and airport (Beijing). Retiming the text at the
bottom draws attention to that area in the latter portion of the video.

MPTransformer(P, args):

// Change the background.

changeAppearance(P, args.background)

// OBJECT SELECTOR: Select all objects in the top third of the video.

// Sort them by y-position at the very end. We will only change

// two objects.

function in_top_third(vals):

if y > m_frame_height / 3:

return False

return True

topObjs = objSelector(

P, propQuery, "positionY", in_top_third, [0, P.endFrm])

function yComparator(obj):

return propQuery(obj, "positionY", [P.endFrm - 1, P.endFrm])[0]

bottomObjs = sorted(bottomObjs, key=yComparator)

changeObjs = [topObjs[0], topObjs[-1]]

// OBJECT TRANSFORMER: Change to new language and shift them so that

// they end up in the bounds of the screen.

changeAppearanceObjTransformer(changeObjs, arg.topText, [0, P.endFrm])

function xShift(t, [x, amt]):

return x[t] + amt

adjGlobalMotion(

changeObjs[0], xShift,

[changeObjs[0].startFrm, changeObjs[0].endFrm], args.shiftDiscover)

adjGlobalMotion(

changeObjs[1], xShift,

[changeObjs[1].startFrm, changeObjs[1].endFrm], args.shiftSydney)

// Remove all the other objects.

removeObjs(topObjs[1:-1])

// OBJECT SELECTOR: Select all objects in the bottom third of

// the video.

function in_bottom_third(y):

if y < 2 * P.height / 3:

return False

return True

bottomObjs = objSelector(

P, "positionY", in_bottom_third, [0, P.endFrm])

// Sort all objects by x position at the very end. We will change one

// object to the first translated phrase and another object to the

// second translated phase.

function xComparator(obj):

return propQuery(obj, "positionX", [P.endFrm - 1, P.endFrm])[0]

bottomObjs = sorted(bottomObjs, key=xComparator)

copyObjs = copy(bottomObjs[0])

changeObjs = [bottomObjs[0], copyObjs[0]]

// OBJECT TRANSFORMER: Change to new language and shift them inwards.

changeAppearanceObjTransformer(

changeObjs, args.bottomText, [0, P.endFrm])

function setX(t, [x, amt]):

return amt

adjLocalMotion(

changeObjs[0], setX,

[changeObjs[0].startFrm, changeObjs[0].endFrm],

args.bottomTextShift)

adjLocalMotion(

changeObjs[1], setX,

[changeObjs[1].startFrm, changeObjs[1].endFrm],

-args.bottomTextShift)

// Delay the second phrase by a little bit.

linearRetimeObjTransformer(changeObjs[1], 5, [0, 1])

// Remove all the other objects.

removeObjs(bottomObjs[1:])

lucy: The following program transformer translates a social media ad into French. Since we only
use one word “enchanté” in French for the English phrase “nice to meet you,” we adjust the
“enchanté” to float up to the middle of the video. Using an adjGlobalMotion object transformer
on the two circles which are held down briefly by the original English text, we can adjust the
circles so that they still get held down by the word “enchanté.”

MPTransformer(P, args):

// Change to french text.

new_appearances = [

'data/misc30/french/enchante.png',

'data/misc30/french/jesuis.png',

'data/misc30/french/lucy.png',

]

wordObjs = objSelector(P, propQuery, "color", "black", [0, P.endFrm])

changeAppearanceObjTransformer(wordObjs[-3:], new_appearances)

removeObjs(wordObjs[:-3])

// Positional adjustments.

function setX(t, [x, amt]):

return amt / 2

adjGlobalMotion(

wordObjs[-3], setX, [obj.startFrm, obj.endFrm], amt=P.width / 2)

// Get the two objects in contact with it.

collisions = eventQuery(wordObjs[-3], "collisionFrames", [100, 200])

function containsID(id, id_list):

return id in id_list

id_list = {}

for collision in collisions:

id_list.add([obj.id for obj in collision])

contactObjs = objSelector(

P, propQuery, "id", containsID, [0, P.endFrm], id_list=id_list)

function adjust_by(t, [y, amt]):

return amt

adjustLocalObjTransformer(

[wordObjs[-3], contactObjs[0], contactObjs[1]],

adjust_by, [wordObjs[-3].startFrm, P.endFrm], amt=-75)

// Readjust the two contact objects motions so that they float from

// their new starting position to their original ending position.

function global_interp(t, [y, start, end, length]):

if t < length:

return end * t / length + start * (1 - t / length)

else:

return end

for obj in contactObjs:

y_pos_start = propQuery(

obj, "positionY", [0, wordObjs[-3].endFrm])[-1]

y_pos_end = minimum(

propQuery(obj, "positionY", [obj.startFrm, obj.endFrm]))

adjGlobalMotion(

obj, global_interp, [wordObj[-3].endFrm, obj.endFrm],

start=y_pos_start, end=y_pos_end, length=P.frame_rate)

confetti: We change the appearance of all the objects and background in the confetti video to
create a spring motion graphic. In order to make the falling petals more realistic, we use a
linearRetimeObjTransformer to slow them down and apply a petal_fall() motion texture
function that makes them sway back and forth. To match the pixel art look of the images, we
also animate the falling objects on 3s. Finally, we can adjust the depth of the petals to surround
the text rather than fall over it.

MPTransformer(P, args):

// Change background image.

setBgImg(P, args.background)

// OBJECT SELECTOR: Select all confetti.

confettiObjs = objSelector(P, propQuery, "color", "not black", [0,

P.endFrm])

// OBJECT TRANSFORMER: Remove held frames.

removeHeldFramesObjTransformer(confettiObjs, [0, P.endFrm])

// Rotate and resize all confetti by random amounts and fall back and

forth.

function rotate(t, [theta]):

deg = 120 * (randFloat() - 0.5)

return deg

adjustGlobalObjTransformer(confettiObjs, rotate [0, P.endFrm])

function random_size(t, [sx, sy]):

amt = randFloat() * 0.5 + 0.5

return [amt, amt]

adjustGlobalObjTransformer(confettiObjs, random_size, [0, P.endFrm])

function petal_fall(t, [x, offset]):

return offset * sin(t)

motionTexObjTransformer(confettiObjs, petal_fall, [0, P.endFrm],

offset=60)

// OBJECT SELECTOR: Select letter 'C'.

cObjs = objSelector(P, propQuery, "id", "shape_09", [0, P.endFrm])

// OBJECT TRANSFORMER: Change to 'SPRING' text.

changeAppearanceObjTransformer(cObjs, args.season)

// Remove remaining letters.

letterObjs = obj_selector(P, propQuery, "color", "black", [0,

P.endFrm])

removeObjs(letterObjs)

// OBJECT TRANSFORMER: Make all confetti slower and animate on 3s.

linearRetimeObjTransformer(confettiObjs, 6, [0, P.endFrm])

animOnNsObjTransformer(confettiObjs, 3, [0, P.endFrm])

// Replace all objects with flowers.

// The random_choice(arr, size) function selects a random subset of

size with replacement

// from a list of choices.

new_appearances = random_choice(args.confetti_imgs, len(confettiObjs))

changeAppearanceObjTransformer(confettiObjs, new_appearances)

// Randomly adjust depth layering.

function random_raise_z(t, [z]):

return random_choice([-10, 10])

adjustGlobalObjTransformer(confettiObjs, random_raise_z, [0, P.endFrm])

giftbox1: We can achieve complex variations of an input SVG by composing sequences of
object selector blocks and object transformer blocks. For example, the following program
transformer takes a giftbox video and outputs a box with bubbles. We can write out object
transformer blocks using the previously defined object transformer functions, or in expanded for
loops (see giftBox.html in the supplemental material).

BubbleProgTransformer(P, args):

// OBJECT SELECTOR: Query for the red ball.

selObjs = objSelector(P, propQuery, "color", "red", [frmA, frmB])

// OBJECT TRANSFORMER: Change the appearance to bubble.

newAppearances = ["bubble.png", ..., "bubble.png"]

changeAppearanceObjTransformer(selObjs, newAppearances, [frmA, frmB])

// Create lots of bubbles.

newObjs = {}

for each obj in selObjs:

repeat N times:

// copy() duplicates an object in the SVG motion program.

newObjs.insert(copy(obj))

// OBJECT SELECTOR: Find all bubbles.

selObjs = objSelector(P, propQuery, "appearance", "bubble.png",

[frmA, frmB])

// Modify motions of new bubbles.

// OBJECT TRANSFORMER: Make bubbles wobble.

function wobbleFn(x_pos, [t, amp, freq]):

return x_pos[t] + amp * sin(freq * t)

motionTexObjTransformer(selObjs, wobbleFn, args.wobbleFnArgs,

[frmA, frmB])

// OBJECT TRANSFORMER: randomly scale bubbles to different sizes.

for each obj in newObjs:

// randomly scale objs to different sizes

function scaleFn(t, [s, scaleFactor]):

return s[t] * randomFloat()

adjLocalMotion(obj, scaleFn, [obj.startFrm, obj.endFrm])

// Apply motion adjustment to vary bubble paths.

function translateXFn(t, x):

return x[t] + t^4 + randomFloat()

adjGlobalMotion(obj, translateXFn, [obj.startFrm, obj.endFrm])

function translateYFn(t, y):

return y[t] + randomFloat()

adjGlobalMotion(obj, translateYFn, [obj.startFrm, obj.endFrm])

// OBJECT TRANSFORMER: Retime the entire timeline randomly so the

// bubbles move at different speeds.

linearRetimeObjTransformer(selObjs, randomFloat(0.5, 1), [frmA, frmB])

// OBJECT TRANSFORMER: Release bubbles at different times.

// freezeFrame(obj, frm, dur) holds a frame for a duration.

for each obj in newObjs:

duration = randomInt(24, 96)

freezeFrame(obj, 0, duration)

face: The following program transformer modifies elements and motions of an input SVG to
create an output SVG motion program which renders variations of a lunar new year video. Here,
we make use of the motionTexObjTransformer block to vary the motions in addition to having
appearance changes (see shapes38.html in the supplemental material).

NewYearsProgTransformer(P, args):

// Set background color.

setAppearance("bg", args.background)

// OBJECT SELECTOR: Query for the red semicircle.

selObjs = objSelector(P, propQuery, "color", "red", [frmA, frmB])

// OBJECT TRANSFORMER: Change the appearance to the year.

changeAppearanceObjTransformer(selObjs, args.year, [frmA, frmB])

// Repeat obj selection and obj transformation for banner and animal.

selObjs = objSelector(P, propQuery, "color", "yellow", [frmA, frmB])

changeAppearanceObjTransformer(selObjs, args.banner, [frmA, frmB])

selObjs = objSelector(P, propQuery, "color", "white", [frmA, frmB])

changeAppearanceObjTransformer(selObjs, args.zodiac, [frmA, frmB])

// OBJECT SELECTOR: Query for the gray curve.

selObjs = objSelector(P, propQuery, "color", "gray", [frmA, frmB])

// OBJECT TRANSFORMER: Change appearance to characters.

changeAppearanceObjTransformer(selObjs, args.characters, [frmA, frmB])

// OBJECT TRANSFORMER: Apply an oscillating scale.

function pulse(t, [sx, sy]):

return [sx + 0.5 * np.sin(t / 10), sy + 0.5 * np.sin(t / 10)]

motionTexObjTransformer(selObjs, pulse, args.pulseArgs, [frmA,frmB])

// OBJECT SELECTOR: Query for the blue circle.

selObjs = objSelector(P, propQuery, "color", "blue", [frmA, frmB])

// OBJECT TRANSFORMER: Remove the object.

removeObj(selObjs, [frmA, frmB])

levers: The following program transformer retimes the shapes bouncing and rotating at different
rates in the input SVG to all match the same music beats. Here, we make use of the
retimeToBeatsOjTransformer to match each individual shape’s collision cycles with music
beat intervals (see multipleBouncingBalls2.html in the supplemental material).

BouncingBallsRetimedToMusicProgTransformer(P, args):

// OBJECT SELECTOR: Query for all shapes with the "all" propType.

// No matchCriteria is needed, hence an empty array [].

selObjs = objSelector(P, propQuery, "all", [], [frmA, frmB])

// OBJECT TRANSFORMER: Retime periods of collisions in the video

// to match with the music beats by specifying the event type

// as "collisionFrames".

retimeToBeatsObjTransformer(selObjs, args.musicFile,

"collisionFrames", [frmA, frmB])

deconstruct: The following program transformer creates a motion trail effect by duplicating the
letters in the input SVG and applying the cartoon animation filter with different parameters. Here,
we make use of the anticipateFollowThruObjTransformer to add different degrees of
anticipation and follow through to the two sets of letters. The transformed animations are then
overlaid on top of each other (see text2.html in the supplemental material).

MotionTrailProgTransformer(P, args):

// OBJECT SELECTOR: Query for all shapes with the "all" propType.

// No matchCriteria is needed, hence an empty array [].

selObjs = objSelector(P, propQuery, "all", [], [frmA, frmB])

// Copy the selected objects to transform them differently.

selObjs_copy = copy(selObjs)

// OBJECT TRANSFORMER: Apply appearance change and add anticipation

// and follow-through.

// First add anticipation and follow-through to selObjs with

// amplitude=20 and sigma=8.

anticipateFollowThruObjTransformer(selObjs, [frmA, frmB], 20, 8)

// Then change the appearances of the copied selObjs to red.

changeAppearanceObjTransformer(selObjs_copy, args.redLetters,

[frmA, frmB])

// Finally, add anticipation and follow-through to the copied selObjs

// with amplitude=10 and sigma=4 for an overall motion trail effect.

anticipateFollowThruObjTransformer(selObjs_copy, [frmA, frmB], 10, 4)

ball1: The following program transformer modifies the appearances of elements of an input
SVG to create an output SVG motion program of a coin dropping into a piggy bank. Here, we
make use of the changeAppearanceObjTransformer block to change the appearance of the
yellow ball to a piggy bank and the collisionPreserveObjTransformer block to replace the
appearance of the dark blue ball in a collision-preserving manner (see ball3.html in the
supplemental material).

PiggybankProgTransformer(P, args):

// OBJECT SELECTOR: Select dark blue ball.

selObjs = objSelector(P, propQuery, "color", "dark-blue", [frmA, frmB])

// OBJECT TRANSFORMER: Replace appearance and preserve collisions.

collisionPreserveObjTransformer(selObjs, "coin.png", [frmA, frmB])

// OBJECT SELECTOR: Select yellow ball.

selObjs = objSelector(P, propQuery, "color", "yellow", [frmA, frmB])

// OBJECT TRANSFORMER: Replace its appearance with piggybank.

changeAppearanceObjTransformer(obj, "piggybank.png", [frmA, frmB])

morningShow: The following program transformer modifies the appearances of elements of an
input SVG to create an output SVG motion program of a subway sign. Here, we make use of the
objSelector function and the changeAppearanceObjTransformer block to select desired

shapes and change their appearances to appropriate letters and icons (see ball8.html in the
supplemental material).

SubwaySignProgTransformer(P, args):

// Set the background image.

changeAppearance("bg", args.background)

// Keep track of unchanged objects because we will replace them later.

unchangedObjs = objSelector(P, propQuery, "position", [[0, 1], [0, 2/9]],

[frmA, frmB])

// Replace the second row with Canal St stations.

selObjs = objSelector(P, propQuery, "position", [[0, 1], [1/9, 2/9]],

[frmA, frmB])

changeAppearanceObjTransformer(selObjs, args.canalStImgs, [frmA, frmB])

unchangedObjs.remove(selObjs)

// Replace the fourth row with NJ transit and 123 trains.

selObjs = objSelector(P, propQuery, "position", [[0, 1], [1/3 , 4/9]],

[frmA, frmB])

changeAppearanceObjTransformer(selObjs[:3], args.oneTwoThree,

[frmA, frmB])

changeAppearanceObjTransformer(selObjs[3:], args.njTransit,

[frmA, frmB])

unchangedObjs.remove(selObjs)

// Replace the eighth row with Penn Station and ACE trains.

selObjs = objSelector(P, propQuery, "position", [[0, 1], [7/9, 8/9]],

[frmA, frmB])

changeAppearanceObjTransformer(selObjs[:5], args.ace, [frmA, frmB])

changeAppearanceObjTransformer(selObjs[5:], args.pennStation,

[frmA, frmB])

unchangedObjs.remove(selObjs)

// Replace the black circle with a pink circle.

blackCircle = propQuery(obj, "color", "black", [frmA, frmB])

changeAppearanceObjTransformer(blackCircle, "pinkCircle.png",

[frmA, frmB])

unchangedObjs.remove(blackCircle)

// Select some random objects to replace with green or yellow taxis.

// randInt(a, b) chooses a random integer in [a, b].

numTaxis = randInt(0, len(unchangedObjs))

taxiImgs = chooseRandom(numTaxis, args.taxiImgs, replace=True)

taxis = chooseRandom(numTaxis, unchangedObjs, replace=False)

changeAppearanceObjTransformer(taxis, taxiImgs, [frmA, frmB])

unchangedObjs.remove(taxis)

// Select a random object to replace with pedestrian signs.

signs = chooseRandom(1, unchangedObjs, replace=True)

changeAppearanceObjTransformer(signs, args.walkImg, [0, frmB/4])

changeAppearanceObjTransformer(signs, args.stopImg, [frmB/4, frmB/2])

changeAppearanceObjTransformer(signs, args.walkImg, [frmB/2, 3 *

frmB/4])

changeAppearanceObjTransformer(signs, args.stopImg, [3 * frmB/4, frmB])

// Replace the remaining objects with random colored circles.

pplCircles = chooseRandom(len(unchangedObjs), args.pplCircles,

replace=True)

changeAppearanceObjTransformer(unchangedObjs, pplCircles, [frmA, frmB])

dog: The following program transformer first changes the appearance of elements in the input
SVG to resemble different animals and then retimes the cyclic seesaw motions to match the
music beats. Here, we make use of the changeAppearanceObjTransformer to change the
appearances of shapes and retimeToBeatsOjTransformer to match each shape’s cyclic
motions with music beat intervals (see dogSeesaw3.html in the supplemental material).

AnimalSeesawRetimedToBeatsProgTransformer(P, args):

// OBJECT SELECTOR: Query for all shapes with the "all" propType.

// No matchCriteria is needed, hence an empty array [].

selObjs = objSelector(P, propQuery, "all", [], [frmA, frmB])

// Make two copies of the objects to change their appearances later.

catObjs = copy(selObjs)

eleObjs = copy(selObjs)

// OBJECT SELECTOR: Query for static shapes in catObjs

// and elephantObjs by checking if a shape has 0 velocity.

catStaticObjs = objSelector(P, propQuery, "velocity", [0], [frmA, frmB])

eleStaticObjs = objSelector(P, propQuery, "velocity", [0], [frmA, frmB])

// OBJECT TRANSFORMER: Change the appearances of static objects

// to make them look like a cat and an elephant respectively.

changeAppearanceObjTransformer(catStaticObjs, ["catEarL.png",

"catEarR.png", "catMouthWhiskers.png"]

[frmA, frmB])

changeAppearanceObjTransformer(eleStaticObjs, ["eleEarL.png",

"eleEarR.png", "eleTrunk.png"]

[frmA, frmB])

// Retime the cat and elephant objects to go after the original objects

for each obj in catObjs:

retime(obj, [0, frmB], [frmB, frmB * 2], f(t)=t)

for each obj in eleObjs:

retime(obj, [0, frmB], [frmB * 2, frmB * 3], f(t)=t)

// OBJECT TRANSFORMER: Retime cyclic motions in the entire video to

// match with the music beats by specifying the event type as

// "motionCycleFrames".

retimeToBeatsObjTransformer(selObjs, "BeatOfTheIsland.wav",

"motionCycleFrames", [frmA, frmB *3])

